aromatic H), 7.52 (2 H, br. d, J 8.0, aromatic H); δC (100 MHz,
DMSO-d6) 47.3, 52.7, 61.9, 70.0, 100.7, 124.3, 125.8, 126.8,
127.7, 128.2, 128.4, 128.6, 129.2, 131.6, 133.1, 135.4, 139.0,
167.7 (CO), 174.3 (CO), 176.8 (CO).
8-(10H-Phenothiazin-10-yl-carbonyl)-10-phenyl-8H-pyrrolo-
[3Ј,4Ј:3,4]pyrrolo[2,1-a]isoquinoline-9,11-dione 3e. White crys-
tals (oxidation of 7e: 460 mg, 85%), mp 317–319 ЊC (Found: C,
74.0; H, 3.3; N, 7.5. C33H19N3O3S requires C, 73.7; H, 3.6; N,
7.8%); m/z (EI) 537 (Mϩ, 37%), 339 (100), 295 (92), 268 (30),
198 (36), 164 (68), 77 (31); νmax (KBr)/cmϪ1 1759 (CO), 1716
(CO); δH (400 MHz, DMSO-d6) 7.21–7.27 (7 H, m, aromatic
H), 7.36–7.40 (1 H, m, aromatic H), 7.46–7.58 (6 H, m,
aromatic H), 7.57–7.70 (2 H, m, aromatic H), 7.94–7.97 (1 H,
m, H-6), 8.63 (1 H, d, J 7.6, H-4), 8.97–9.00 (1 H, m, H-9).
General Procedure for the oxidation of cycloadducts with TPCD
[CoPy4(HCrO4)2]
A solution of the partly unsaturated cycloadduct 1a, 2c, d or 7e
(1 mmol) and TPCD (0.4 g, 0.66 mmol) in DMF (10 mL) was
refluxed for 5 h. The solution which turned green, was filtered
hot, concentrated in vacuum and then diluted with water
(10 mL). The resulting mixture was extracted with CH2Cl2 (3 ×
20 mL). The organic layer was dried (MgSO4), concentrated in
vacuum to afford 3a, c, d, e as a white solid which was recrystal-
lized in acetone (3a–d) or in acetone–EtOH (3e).
Acknowledgements
We would like to thank Dr T. G. C. Bird (Astra-Zeneca, Reims)
for helpful comments on the manuscript and Dr E. Maes
(UMR 8576, USTL) for some 400 MHz 1H NMR spectra.
{1,2-Bis(methoxycarbonyl)pyrrolo[2,1-a]isoquinolin-3-yl}-
(10H-phenothiazin-10-yl)methanone 3a. White crystals (oxid-
ation of 1a: 422 mg, 83%), mp 215–217 ЊC (Found: C, 68.7; H,
4.1; N, 5.9. C29H20N2O5S requires C, 68.5; H, 4.0; N, 5.5%); m/z
(EI) 508 (Mϩ, 3%), 310 (100), 282 (23), 198 (30), 166 (21); νmax
(KBr)/cmϪ1 1745 (CO), 1689 (CO); δH (DMSO-d6) 3.79 (3 H, s,
OCH3), 3.89 (3 H, s, OCH3), 7.20–7.26 (4 H, m, aromatic H),
7.28 (1 H, d, J 7.2, H-5), 7.45–7.61 (6 H, m, aromatic H), 7.80–
7.82 (1 H, m, H-6), 8.15–8.22 (1 H, br. d, J 7.2, H-4), 8.31–8.33
(1 H, m, H-9); δC (DMSO-d6) 52.2 (CH3), 53.3 (CH3), 110.0
(C-1), 118.9, 123.0, 123.4, 123.6, 124.5, 124.9, 126.8, 127.2,
128.2, 128.4, 128.7, 129.0, 129.7, 129.9, 132.6, 137.8, 160.5
(CO), 163.8 (CO), 167.0 (CO).
References
1 S. P. Massie, Chem. Rev., 1954, 54, 797–833.
2 C. Bodea and I. Silberg, Adv. Heterocycl. Chem., 1968, 9, 321–
460.
3 S. Saraf, F. Al-Omran and B. Al-Saleh, Heterocycles, 1987, 26,
239–273.
4 M. Sainsbury, 1,4-Thiazines, 1,4-Benzothiazines, Phenothiazines and
Related Compounds, in Rodd’s Chemistry of Carbon Compounds,
ed. M. Sainsbury, Elsevier, Amsterdam, 2nd Edition, 1998, vol 4,
Part G/Part H, pp. 575–608.
5 D. Lednicer and L. A. Mitscher, The Organic Chemistry of Drug
Synthesis, Wiley, New York, 1976, vol 1, pp. 372–392.
6 A. A. Borbely and M. Loepfe-Hinkkanen, Mod. Pharmacol.-
Toxicol., 1979, 16, 403–426.
{1-Methoxycarbonylpyrrolo[2,1-a]isoquinolin-3-yl}(10H-
phenothiazin-10-yl)methanone 3b. White crystals (from ylide 4
and methyl propioloate: 1.60 g, 71%), mp 254–256 ЊC (Found:
C, 71.7; H, 4.0; N, 6.3. C27H18N2O3S requires C, 72.0; H, 4.0;
N, 6.2%); m/z (EI) 450 (Mϩ, 15%), 252 (100), 224 (37), 198 (39),
166 (41); νmax (KBr)/cmϪ1 1704 (CO), 1646 (CO); δH (DMSO-d6)
3.84 (3 H, s, OCH3), 6.58 (1 H, s, H-2), 7.28–7.38 (4 H, m,
aromatic H), 7.44 (1 H, d, J 7.4, H-5), 7.57–7.73 (6 H, m, aro-
matic H), 7.80–7.84 (1 H, m, H-6), 8.93 (1 H, d, J 7.4, H-4),
9.44–9.48 (1 H, m, H-9); δC (DMSO-d6) 52.8 (CH3), 108.8 (C-1),
115.4, 120.3, 122.7, 125.0, 126.0, 127.6, 127.8, 128.1, 128.4,
128.8, 128.9, 130.1, 130.4, 132.7, 134.6, 139.7, 160.5 (CO), 165.4
(CO).
7 A. S. Horn, in Comprehensive Medicinal Chemistry. The Rational
Design, Mechanistic Study, and Therapeutic Application of Chemical
Compounds: Membranes and Receptors, eds. C. Hansch, P. G.
Sammes, J. B. Taylor and J. C. Emmett, Pergamon Press, Oxford,
1990, vol 3, p. 321.
8 J. E. Kristiansen, Dan. Med. Bull., 1989, 36, 178–185.
9 A. Lespagnol, Bull. Soc. Chim. Fr., 1960, 1291–1299.
10 Developments in Neuroscience. Phenothiazines and Structurally
Related Drugs: Basic and Clinical Studies, eds. E. Usdin, H. Eckert
and I. S. Forrest, Elsevier, New York, 1980, vol 7.
11 Bioactive Molecules. Phenothiazines and 1,4-Benzothiaiznes:
Chemical and Biomedical Aspects, ed. R. R. Gupta, Elsevier,
Amsterdam, 1988, vol 4.
12 N. Motohashi, S. R. Gollapudi, J. Emrani and K. R. Bhattiprolu,
Cancer Invest., 1991, 9, 305–319.
13 L. R. Morgan, A. H. Rodgers, B. W. Leblanc, S. M. Boué, Y. Yang,
B. S. Jursic and R. B. Cole, Bioorg. Med. Chem. Lett., 2001, 11,
2193–2195.
14 M. Petrovanu, E. Bâcu, P. Grandclaudon and A. Couture,
Phosphorus, Sulfur, Silicon, 1996, 108, 231–237.
15 E. Bâcu, M. Petrovanu, C. Antohie, I. Ciocoiu and O.-C. Mungiu,
Ann. Pharm. Fr., 1997, 55, 268–271.
16 E. Bâcu, M. Petrovanu, P. Grandclaudon and A. Couture,
Roum. Biotechnol. Lett., 1997, 2, 383–389.
17 E. Bâcu, M. Petrovanu, A. Couture and P. Grandclaudon,
Phosphorus, Sulfur, Silicon, 1999, 149, 207–220.
18 E. Bâcu, A. Couture and P. Grandclaudon, Synth. Commun., 2003,
33, 143–151.
19 M. Schreibman, C. E. Miller, W. H. Shelver and J. P. Vacik,
J. Pharm. Sci., 1964, 53, 985–986.
20 E. Lukevics, M. Trushule, S. Germane and I. Turovskii, Chem.
Heterocycl. Compd. (Engl. Transl.), 1997, 33, 229–233.
21 A. Prewysz-Kwinto, Khim. Geterotsikl. Soedin., 1987, 6, 756–759
(Chem. Abstr., 1988, 108, 112109).
22 S. Darvesh, D. Magee, Z. Valenta and E. Martin, PCT Int. Appl.,
2001, WO 0177078(Chem. Abstr., 2001, 135, 303780).
23 S. Darvesh, D. I. Magee, R. S. Mcdonald and E. V. Martin, PCT Int.
Appl., 2001, WO 0192240(Chem. Abstr., 2001, 136, 20279).
24 A. R. Katritzky, N. E. Graeskowiak and J. Alvarez-Builla, J. Chem.
Soc., Perkin Trans. 1, 1981, 1180–1185.
25 A. M. Shestopalov, Y. A. Sharanin, V. N. Nesterov, L. A.
Rodinovskaya, V. E. Shklover, Y. T. Struchkov and V. P. Litvinov,
Khim. Geterotsikl. Soedin., 1991, 9, 1248–1254 (Chem. Abstr., 1992,
116, 214313).
{1-Ethoxycarbonylpyrrolo[2,1-a]isoquinolin-3-yl}(10H-phen-
othiazin-10-yl)methanone 3c. White crystals (from ylide 4 and
ethyl propiolate: 1.70 g, 73%; oxidation of 2c: 377 mg, 81%),
mp 218–220 ЊC (Found: C, 72.3; H, 4.03; N, 6.1. C28H20N2O3S
requires C, 72.4; H, 4.3; N, 6.0%); m/z (EI) 464 (Mϩ, 12%), 266
(100), 238 (28), 199 (42), 166 (35); νmax (KBr)/cmϪ1 1700 (CO),
1635 (CO); δH (DMSO-d6) 1.18 (3 H, t, J 7.1, CH3), 4.15 (2 H, q,
J 7.1, CH2), 6.54 (1 H, s, H-2), 7.25–7.35 (4 H, m, aromatic H),
7.42 (1 H, d, J 7.5, H-5), 7.59–7.70 (6 H, m, aromatic H), 7.80–
7.84 (1 H, m, H-6), 9.03 (1 H, d, J 7.5, H-4), 9.56–9.60 (1 H, m,
H-9); δC (DMSO-d6) 14.9 (CH3), 60.8 (CH2), 108.8 (C-1), 115.1,
119.5, 123.3, 124.9, 127.6, 128.0, 128.2, 128.5, 128.7, 129.8,
130.2, 132.7, 134.2, 139.6, 160.0 (CO), 164.5 (CO).
{1-Cyanopyrrolo[2,1-a]isoquinolin-3-yl}(10H-phenothiazin-
10-yl)methanone 3d. White crystals (from ylide 4 and acrylo-
nitrile: 1.40 g, 67%; oxidation of 2d: 290 mg, 70%), mp 263–265
ЊC (Found: C, 74.4; H, 3.5; N, 10.2. C26H15N3OS requires C,
74.8; H, 3.6; N, 10.1%); m/z (EI) 417 (Mϩ, 21%), 219 (100), 198
(25), 192 (17), 166 (22); νmax (KBr)/cmϪ1 2216 (CO), 1650 (CO);
δH (DMSO-d6) 6.31 (1 H, s, H-2), 7.20–7.29 (4 H, m, aromatic
H), 7.32 (1 H, d, J 7.6, H-5), 7.52–7.63 (6 H, m, aromatic H),
7.81–7.84 (1 H, m, H-6), 8.65–8.70 (1 H, m, H-9), 8.98 (1 H, d,
J 7.5, H-4); δC (DMSO-d6) 84.5 (C-1), 115.3, 117.5, 120.5 (CN),
122.6, 123.3, 124.2, 125.4, 127.6, 127.7, 128.1, 128.5, 129.2,
129.5, 130.0, 132.8, 139.3, 159.4 (CO).
26 M. Travnicek, J. Pospisil and M. Potacek, Collect. Czech. Chem.
Commun., 1999, 64, 1993–2006.
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 2 3 7 7 – 2 3 8 2
2381