C O M M U N I C A T I O N S
π-conjugation from 2a to 9 causes substantial red shifts in the
absorption and emission maxima by 64 and 47 nm, respectively,
without a significant decrease in ΦF. Consequently, 9 exhibits an
intense greenish blue emission, indicative of their potential use as
a new emitting material.
In summary, we have developed a new intramolecular reductive
double cyclization as an efficient synthetic method for the silicon-
bridged stilbene homologues. This methodology will open a new
chemistry of bridged stilbene-based π-conjugated systems, which
have great potentials as new materials for the organic-based
electronic and optoelectronic devices. Further studies on the
electronic properties of the present compounds as well as the
synthesis of more extended ladder-type π-conjugated systems such
as 3 are currently in progress in our laboratory.
Figure 1. ORTEP drawing of 9 (50% probability for thermal ellipsoids).
Table 1. Photophysical Properties of Bridged Stilbene Derivatives
UV−vis absorptiona
fluorescencea
b
c
cmpd
λ
max/nm
log ꢀ
λ
max/nm
ΦF
τS/nsd
Acknowledgment. We thank Prof. Hiroshi Hiratsuka at Gunma
University (Japan) for his helpful discussion. This work was
supported by Grants-in-Aid (No. 12CE2005 for Elements Science
and 15205014) from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan, and PRESTO, Japan Science
and Technology Corporation (JST).
2a
2b
9
360
371
424
447
322
4.08
3.92
4.43
4.36
4.45
426
439
473
0.58
0.61
0.50e
5.5
n.d.
3.5
1a (R ) Me)
367
0.92f
1.6
a In THF. b Emission maxima upon excitation at the absorption maximum
wavelengths. c Determined with 9,10-diphenylanthracene as a standard,
unless otherwise stated. The ΦF is the average value of repeated measure-
ments within (5% error. d Fluorescence lifetimes within (0.5 ns error.
e Determined with perylene as a standard. f Determined with anthracene as
a standard.
Supporting Information Available: Experimental procedures and
spectral data for 2, 4, and 7-9, and crystallographic data of 9 (PDF
and CIF). This material is available free of charge via the Internet at
References
To the best of our knowledge, this is the first example of the
tetrakis-bridged bis(styryl)benzene. The X-ray crystallographic
analysis of 9 proved its highly coplanar structure due to the tetrakis-
silicon bridges; the dihedral angle between the central and the outer
benzene rings is 3.9° (Figure 1). This fact suggests that the
π-conjugation is effectively extended over the entire molecule.
The photophysical data of the silicon-bridged stilbene homo-
logues are summarized in Table 1, together with the data of 1a
(R ) Me),14 for comparison. There are a couple of notable points:
(1) The silicon-bridge significantly shifts the absorption and
emission maxima to a longer wavelength. As compared with the
carbon analogue 1a, the absorption and emission maxima of 2a
are longer by about 40 and 60 nm, respectively. These significant
red shifts are attributable to the electronic contribution of the silicon
bridges. Thus, the orbital interaction between the σ* orbital of the
Me2Si moiety and the π* orbital of the stilbene framework
effectively decreases the LUMO level.11a Preliminary calculations
at the HF/6-31G(d) level showed that the LUMO of 2a is about
0.55 eV lower than that of 1a, while the decrease in the HOMO
level from 1a to 2a is only 0.19 eV. As a consequence, the silicon
analogue 2a has a smaller HOMO-LUMO energy gap and its
emission color reaches the blue region, despite its rather short
π-conjugation length. (2) The fluorescence quantum yield of the
silicon analogues tends to be slightly lower than that of the carbon
analogue 1a (R ) Me). Fluorescence lifetime measurements showed
that this is mainly due to the slower radiative decay process from
the excited state in 2a. Thus, the radiative rate constant of 2a (kr )
1.1 × 108 s-1), calculated on the basis of ΦF and τs, is about one-
fifth of that of 1a (kr ) 5.8 × 108 s-1), while the nonradiative rate
constants are only slightly different from each other (knr ) 7.6 ×
107 s-1 for 2a vs 5.0 × 107 s-1 for 1a). (3) The extension of the
(1) For recent reviews: (a) Martin, R. E.; Diederich, F. Angew. Chem., Int.
Ed. 1998, 37, 402. (b) Scherf, U. J. Mater. Chem. 1999, 9, 1853. (c)
Watson, M. D.; Fechtenko¨tter, A.; Mu¨llen, K. Chem. ReV. 2001, 101,
1267.
(2) (a) Zhang, Q. T.; Tour, J. M. J. Am. Chem. Soc. 1997, 119, 9624. (b)
Haryono, A.; Miyatake, K.; Natori, J.; Tsuchida, E. Macromolecules 1999,
32, 3146. (c) Seayesh, S.; Marsitzky, D.; Mu¨llen, K. Macromolecules 2000,
33, 2016. (d) Xia, C.; Advincula, R. C. Macromolecules 2001, 34, 6922.
(e) Yamaguchi, S.; Swager, T. M. J. Am. Chem. Soc. 2001, 123, 12087.
(f) Oyaizu, K.; Mikami, T.; Mitsuhashi, F.; Tsuchida, E. Macromolecules
2002, 35, 67. (g) Former, C.; Becker, S.; Grimsdale, C.; Mu¨llen, K.
Macromolecules 2002, 35, 1576.
(3) Stampfl, J.; Granupner, W.; Leising, G.; Scherf, U. J. Lumin. 1995, 63,
117. Tasch, S.; Niko, A.; Leising, G.; Scherf, U. Appl. Phys. Lett. 1996,
68, 1090.
(4) (a) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. AdV. Mater.
2000, 12, 1737. (b) Wu, C.-c.; Liu, T.-L.; Hung, W.-Y.; Lin, Y.-T.; Wong.
K.-T.; Chen, R.-T.; Chen, Y.-M.; Chien, Y.-Y. J. Am. Chem. Soc. 2003,
125, 3710.
(5) Babel, A.; Jenekhe, S. A. AdV. Mater. 2002, 14, 371.
(6) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359.
(7) (a) Zenz, C.; Graupner, W.; Tasch, S.; Leising, G.; Mu¨llen, K.; Scherf,
U. Appl. Phys. Lett. 1997, 71, 2566. (b) Kallinger, C.; Hilmer, M.;
Haugeneder, A.; Perner, M.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf,
U.; Mu¨llen, K.; Gombert, A.; Wittwer, V. AdV. Mater. 1998, 10, 920.
(8) Lemmer, U.; Heun, S.; Mahrt, R. F.; Scherf, U.; Hopmeier, M.; Siegner,
U.; Go¨bel, E. O.; Mu¨llen, K.; Ba¨ssler, H. Chem. Phys. Lett. 1995, 240,
373.
(9) Hertel, D.; Scherf, U.; Ba¨ssler, H. AdV. Mater. 1998, 10, 1119.
(10) (a) Saltiel, J.; Zafiriou, O. C.; Megarity, E. D.; Lamola, A. A. J. Am.
Chem. Soc. 1968, 90, 4759. (b) Saltiel, J.; Marinari, A.; Chang, D. W. L.;
Mitchener, J. C.; Megarity, E. D. J. Am. Chem. Soc. 1979, 101, 2982.
(11) (a) Yamaguchi S.; Tamao, K. Bull. Chem. Soc. Jpn. 1996, 69, 2327. (b)
Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. J.
Am. Chem. Soc. 1996, 118, 11974. (c) Yamaguchi, S.; Endo, T.; Uchida,
M.; Izumizawa, T.; Furukawa, K.; Tamao, K. Chem.-Eur. J. 2000, 6, 1684.
(12) Serby, M.; Ijadi-Maghsoodi, S.; Barton, T. J. 33rd Symposium on
Organosilicon Chemistry; Saginaw, MI, 2000; PA-35.
(13) Calculations at the HF/6-31G(d) level showed that the LUMO of 2a is
about 0.1 eV lower than that of 4a.
(14) Hellwinkel, D.; Hasselbach, H.-J.; La¨mmerzahl, F. Angew. Chem., Int.
Ed. Engl. 1984, 23, 705.
JA038487+
9
J. AM. CHEM. SOC. VOL. 125, NO. 45, 2003 13663