1666
P.-Q. Huang et al.
LETTER
(4) (a) Ablondi, F.; Gordon, S.; Morton, J. II; Williams, J. H. J.
Org. Chem. 1952, 17, 14. (b) Hutchings, B. L.; Gordon, S.;
Ablondi, F.; Wolf, C. F.; Williams, J. H. J. Org. Chem. 1952,
17, 19.
(15) (a) Chamberlin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc.
1983, 105, 3653. (b) Klaver, W. J.; Hiemstra, H.; Speckamp,
W. N. J. Am. Chem. Soc. 1989, 111, 2588. (c) Bernardi, A.;
Micheli, F.; Potenza, D.; Scolastico, C.; Villa, R.
(5) (a) Koepfli, J. B.; Brockman, J. A.; Moffat, J. J. Am. Chem.
Soc. 1950, 72, 3323. (b) Baker, B. R.; McEvoy, F. J.;
Schaub, R. E.; Joseph, J. P.; Williams, J. H. J. Org. Chem.
1953, 18, 178. (c) Takeuchi, Y.; Azuma, K.; Abe, H.;
Sasaki, K.; Harayama, T. Chem. Pharm. Bull. 2002, 50,
1011. (d) Takeuchi, Y.; Azuma, K.; Oshige, M.; Abe, H.;
Nshioka, H.; Sasaki, K.; Harayama, T. Tetrahedron 2003,
59, 1639.
(6) (a) Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.
Tetrahedron Lett. 1999, 40, 2175. (b) Kobayashi, S.; Ueno,
M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, Y. J. Org.
Chem. 1999, 64, 6833.
(7) (a) Jang, C. S.; Fu, F. Y.; Wang, C. Y.; Huang, K. C.; Lu, G.;
Thou, T. C. Science 1946, 103, 59. (b) Frederick, A. K. Jr.;
Spencer, C. F.; Folkers, K. J. Am. Chem. Soc. 1948, 70,
2091.
(8) (a) Waletzky, E.; Berkelhammer, G.; Kantor, S. U. S. Patent
3320124, 1967. (b) Elkin, M.; Reich, R.; Nagler, A.;
Aingorn, E.; Pines, M.; De Groot, N.; Hochberg, A.;
Vlodavsky, I. Clin. Cancer Res. 1999, 5, 1982.
Tetrahedron Lett. 1990, 31, 4949.
(16) For a review on clay and clay-supported reagents in organic
synthesis, see: Varma, R. S. Tetrahedron 2002, 58, 1235.
(17) There is not a general rule for determining the relative
stereochemistry of 5,6-disubstituted 2-piperidinones by 1H
NMR vicinal coupling constants (J5,6). However, during the
course of this work, we were able to observed that for N-
unsubstituted 6-substituted 5-alkoxy- or 5-silyloxy-2-
piperidinones, trans-isomers generally show larger J5,6
(J5,6>3 Hz) than those of cis-isomers (J5,6<3 Hz). Two
literature precedents listed below are in support of this
argument: (a) Boudreault, N.; Ball, R. G.; Bayly, C.;
Bermstein, M. A. Tetrahedron 1994, 50, 7947. (b)Bach,T.;
Bergmann, H.; Brummerhop, H.; Lewis, W.; Harms, K.
Chem.–Eur. J. 2001, 7, 4512.
(18) Brown, D. S.; Charreau, P.; Hansson, T.; Ley, S. V.
Tetrahedron 1991, 47, 1311.
(19) For a recent review on a-amidoalkylation of N-acyliminium,
see: Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000,
56, 3817.
(9) Patnam, R.; Chang, F.-R.; Chen, C.-Y.; Kuo, R. Y.; Lee, Y.
H.; Wu, Y. C. J. Nat. Prod. 2001, 64, 948.
(20) Campbell, A. L.; Pilipauqkas, D. R.; Khanna, I. K.; Rhodes,
R. A. Tetrahedron Lett. 1987, 28, 2331.
(10) (a) Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.;
Kim, H.-S.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima,
Y. J. Med. Chem. 1999, 42, 3163. (b) Kikuchi, H.; Tasaka,
H.; Hirai, S.; Takaya, Y.; Iwabuchi, Y.; Ooi, H.;
Hatakeyama, S.; Kim, H.-S.; Wataya, Y.; Oshima, Y. J.
Med. Chem. 2002, 45, 2563.
(21) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic
Chemistry, 2nd ed.; Wiley: New York, 1991, 401.
(22) (a) Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimura, J.;
Okamoto, T.; Shin, C. Bull. Chem. Soc. Jpn. 1985, 58, 1413.
(b) Yoshimura, J.; Yamaura, M.; Suzuki, T.; Hashimoto, H.
Chem. Lett. 1983, 1001.
(11) (a) Baker, B. R.; Schaub, R. E.; McEvoy, F. J.; Williams, J.
H. J. Org. Chem. 1952, 17, 132. (b) Baker, B. R.; Schaub,
R. E.; McEvoy, F. J.; Williams, J. H. J. Org. Chem. 1953, 18,
153. (c) Baker, B. R.; McEvoy, F. J.; Schaub, R. E.; Joseph,
J. P.; Williams, J. H. J. Org. Chem. 1953, 18, 178. (d) See
also: Baker, B. R.; McEvoy, F. J. J. Org. Chem. 1955, 20,
118. (e) Baker, B. R.; McEvoy, F. J. J. Org. Chem. 1955, 20,
136. (f) Hill, R. K.; Edwards, A. G. Chem. Ind. 1962, 858.
(g) Barringer, D. F. Jr.; Beakelhammer, G. B.; Wayne, R. S.
J. Org. Chem. 1973, 38, 1937. (h) Burgess, L. E.; Gross, E.
K. M.; Jurka, J. Tetrahedron Lett. 1996, 37, 3255.
(i) Takeuchi, Y.; Hattori, M.; Abe, H.; Harayama, T.
Synthesis 1999, 1814.
(12) (a) Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.;
Harayama, T. Chem. Commun. 2000, 1643. (b) Okitsu, O.;
Suzuki, R.; Kobayashi, S. Synlett 2000, 989. (c) Taniguchi,
T.; Ogasawara, K. Org. Lett. 2000, 2, 3193. (d) Takeuchi,
Y.; Azuma, K.; Takakura, K.; Abe, H.; Kim, H.-S.; Wataya,
Y.; Harayama, T. Tetrahedron 2001, 57, 1213. (e) Ooi, H.;
Urushibara, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S.
Org. Lett. 2001, 3, 953. (f) Sugiura, M.; Kobayashi, S. Org.
Lett. 2001, 3, 477. (g) Sugiura, M.; Hagio, H.; Hirabayashi,
R.; Kobayashi, S. Synlett 2001, 1225. (h) Okitsu, O.;
Suzuki, R.; Kobayashi, S. J. Org. Chem. 2001, 66, 809.
(i) Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S. J.
Am. Chem. Soc. 2001, 123, 12510.
(23) To a cooled (–78 °C) solution of 22 (348 mg, 0.85 mmol) in
anhyd CH2Cl2 (10 mL) was added dropwise allyltrimethyl-
silane (0.270 mL, 1.71 mmol). After being stirred for 5 min,
a solution of TiCl4 (0.14 mL, 1.283 mmol) in anhyd CH2Cl2
(2 mL) was added over a period of 40 min. The mixture was
stirred for 4 h at the same temperature and then allowed to
warm to r.t. and stirred for 10 h. After which, a sat. aq
NaHCO3 (1 mL) and brine (2 mL) were slowly added. The
organic layer was separated and the aq phase was extracted
with CH2Cl2 (2 × 2 mL). The combined organic layers were
dried over anhyd Na2SO4 and concentrated. The crude was
purified by chromatography on silica gel (EtOAc/PE) to give
pure (5S,6S)-8 (86 mg), pure (5S, 6R)-23 (38 mg), and a
mixture of un-separated (5S,6S)-8 and (5S,6R)-23 (191 mg)
in a combined yield of 95%. Major diastereomer (5S,6S)-8:
colorless oil. [a]D20 +56.5 (c 1.0, CHCl3). IR(neat): nmax
=
3075, 2952, 2929, 1642,1513, 1463, 1248, 1175 cm–1. 1H
NMR (500 MHz, CDCl3): d = 7.08 (m, 2 H, Ar-H), 6.83 (m,
2 H, Ar-H), 5.87 (m, 1 H, CH=), 5.40 (d, J = 14.6 Hz, 1 H,
NCH2), 5.13 (m, 1 H, =CH2), 5.09 (m, 1 H, =CH2), 3.94–3.88
(m, 1 H, H-5), 3.91 (s, 3 H, OCH3), 3.88 (d, J = 14.6 Hz, 1
H, NCH2), 3.23 (vrt. dt, J = 6.6, 4.7 Hz, 1 H, H-6), 2.63 (m,
2 H, =CCH2) 2.50 (ddd, J = 8.0, 8.8, 17.0 Hz, 1 H, H-3), 2.27
(ddd, J = 7.4, 8.2, 17.0 Hz, 1 H, H-3), 1.94 (m, 1 H, H-4),
1.81 (m, 1 H, H-4), 0.9 (s, 9 H, t-Bu), 0.18 (s, 3 H, SiCH3),
0.08 (s, 3 H, Si-CH3) ppm. 13C NMR (125 MHz, CDCl3): d
= 169.39 (C=O), 158.99 (Ar), 136.11 (CH=), 129.44 (Ar),
129.37 (2 C, Ar), 117.44 (=CH2), 114.01 (2 C, Ar), 68.38 (C-
6), 59.39 (C-5), 55.32 (OCH3), 48.23 (N-CH2), 33.62 (=CH-
CH2), 28.96 (C-3), 25.77 (C-4), 25.68 (3C, t-Bu), 17.97
(SiCMe3), –4.90 (Si-CH3), –5.13 (SiCH3) ppm. MS (ESI):
m/z (%) = 390(100) [M + H+], 412 (11) [M + Na+]. HRMS
calcd for [C22H35NO3Si + H]+: 390.2464. Found: 390.2463.
(5S,6R)-Minor diastereomer 23: colorless oil. [a]D20 –51.4 (c
1.0, CHCl3). 1H NMR (500 MHz, CDCl3): d = 7.09 (m, 2 H,
(13) Huang, P.-Q.; Liu, L.-X.; Wei, B.-G.; Ruan, Y.-P. Org. Lett.
2003, 5, 1927.
(14) Gringore, O. H.; Rouessac, F. P. In Org. Synth., Coll. Vol.
VII; Freeman, J. P., Ed.; John Wiley and Sons: New York,
1990, 99.
Synlett 2003, No. 11, 1663–1667 © Thieme Stuttgart · New York