10.1002/chem.202000620
Chemistry - A European Journal
COMMUNICATION
[5]
[6]
[7]
M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, Chem.
Soc. Rev. 2014, 43, 1660–1733.
[41] J. Boulanger, A. Ponchel, H. Bricout, F. Hapiot, E. Monflier, Eur. J. Lipid
Sci. Technol. 2012, 114, 1439–1446.
M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, Chem.
Soc. Rev. 2014, 43, 1734–1787.
[42] J. Bianga, K. Schlipköter, T. Gaide, A. J. Vorholt, A. Behr, ACS Catal.
2017, 7, 4163–4171.
D. M. Vriezema, M. C. Aragonès, J. A. A. W. Elemans, J. J. L. M.
Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005, 105, 1445–
1489.
[43] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J.
A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22,
931–967.
[8]
[9]
D. Vidal, G. Olivo, M. Costas, Chem. Eur. J. 2018, 24, 5042–5054.
V. F. Slagt, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. Van Leeuwen,
Angew. Chem. Int. Ed. 2001, 40, 4271–4274; Angew. Chem. 2001, 113,
4401–4404.
[44] Amsterdam Modeling Suite, Software for Chemistry and Materials,
[45] E. van Lenthe, A. Ehlers, E.-J. Baerends, J. Chem. Phys. 1999, 110,
8943–8953.
[10] M. Kuil, T. Soltner, P. W. N. M. Van Leeuwen, J. N. H. Reek, J. Am.
Chem. Soc. 2006, 128, 11344–11345.
[46] R. Gramage-Doria, J. Hessels, S. H. A. M. Leenders, O. Tröppner, M.
Dürr, I. Ivanović-Burmazović, J. N. H. Reek, Angew. Chem. Int. Ed. 2014,
53, 13380–13384; Angew.Chem. 2014,126, 13598–13602.
[47] A. Van Rooy, P. C. J. Kamer, P. W. N. M. Van Leeuwen, K. Goubitz, J.
Fraanje, N. Veldman, A. L. Spek, Organometallics 1996, 15, 835–847.
[48] A. Mulder, J. Huskens, D. N. Reinhoudt, Org. Biomol. Chem. 2004, 2,
3409–3424.
[11] T. Gadzikwa, R. Bellini, H. L. Dekker, J. N. H. Reek, J. Am. Chem. Soc.
2012, 134, 2860–2863.
[12] M. Yoshizawa, M. Tamura, M. Fujita, Science 2006, 312, 251–254.
[13] Y. Kuninobu, H. Ida, M. Nishi, M. Kanai, Nat. Chem. 2015, 7, 712–717.
[14] H. J. Davis, M. T. Mihai, R. J. Phipps, J. Am. Chem. Soc. 2016, 138,
12759–12762.
[49] The effective concentration for substrate x bound in the DIM pocket was
roughly estimated: The maximum radius between the rhodium center and
the double bond of natural fatty acids is approximately 11 Å which is 1,1
x 10-8dm3. Which translates to 4/3π(1,1 x 10-8dm)3 = 5,5 x 10-24 dm3. Of
this spherical volume it was estimated the alkene could occupy 50%. This
translates to an effective concentration of ≈ 0.6 M. Since the substrate
concentration is 0.2 M for most experiments, non-bound substrates will
likely compete and allow for a non-selective background reaction. This
nicely explains why the regioselectivity increases upon lowering of the
concentration as this background reaction is repressed.
[50] E. Mieczyńska, A. M. Trzeciak, J. J. Ziółkowski, J. Mol. Catal. 1993, 80,
189–200.
[15] R. Breslow, X. Zhang, R. Xu, M. Maletic, R. Merger, J. Am. Chem. Soc.
1996, 118, 11678–11679.
[16] T. A. Bender, R. G. Bergman, K. N. Raymond, F. D. Toste, J. Am. Chem.
Soc. 2019, 141, 11806–11810.
[17] A. Bauer, F. Westkämper, S. Grimme, T. Bach, Nature 2005, 436, 1139–
1140.
[18] P. A. Lichtor, S. J. Miller, Nat. Chem. 2012, 4, 990–995.
[19] G. W. B. Siddhartha Das, Christopher D. Incarvito, Robert H.
Crabtree,Science 2004, 16750, 2004–2007.
[20] P. Dydio, W. I. Dzik, M. Lutz, B. de Bruin, J. N. H. Reek, Angew. Chem.
Int. Ed. 2011, 50, 396–400; Angew. Chem. 2011, 123, 416–420.
[21] P. Dydio, J. N. H. Reek, Angew. Chem. Int. Ed. 2013, 52, 3878–3882;
Angew. Chem. 2013, 125, 3970–3974
[51] R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 112, 5675–5732.
[22] P. Dydio, R. J. Detz, J. N. H. Reek, J. Am. Chem. Soc. 2013, 135, 10817–
10828.
[23] P. Dydio, R. J. Detz, B. de Bruin, J. N. H. Reek, J. Am. Chem. Soc. 2014,
136, 8418–8429.
[24] T. Šmejkal, B. Breit, Angew. Chem. Int. Ed. 2008, 47, 311–315; Angew.
Chem. 2008, 120, 317–321.
[25] W. Fang, B. Breit, Angew. Chem. Int. Ed. 2018, 57, 14817–14821; W.
Fang, B. Breit, Angew. Chem. 2018,130, 15033–15037.
[26] S. T. Bai, V. Sinha, A. M. Kluwer, P. R. Linnebank, Z. Abiri, B. de Bruin,
J. N. H. Reek, ChemCatChem 2019, 11, 1–9.
[27] S. Perdriau, S. Harder, H. J. Heeres, J. G. de Vries, ChemSusChem
2012, 5, 2427–2434.
[28] G. Olivo, G. Farinelli, A. Barbieri, O. Lanzalunga, S. Di Stefano, M.
Costas, Angew. Chem. Int. Ed. 2017, 56, 16347–16351; Angew. Chem.
2017, 129, 16565–16569.
[29] P. Dydio, T. Zieliński, J. Jurczak, Chem. Commun. 2009, 4560–4562.
[30] D. R. Dodds, R. A. Gross, Science. 2007, 318, 1250–1251.
[31] P. J. Deuss, K. Barta, J. G. De Vries, Catal. Sci. Technol. 2014, 4, 1174–
1196.
[32] T. Vanbésien, E. Monflier, F. Hapiot, Eur. J. Lipid Sci. Technol. 2016,
118, 26–35.
[33] A. Behr, D. Obst, A. Westfechtel, Eur. J. Lipid Sci. Technol. 2005, 107,
213–219.
[34] P. N. R. Vennestrøm, C. M. Osmundsen, C. H. Christensen, E. Taarning,
Angew. Chem. Int. Ed. 2011, 50, 10502–10509; Angew. Chem. 2011,
123, 10686–10694.
[35] S. Pandey, D. R. Shinde, S. H. Chikkali, ChemCatChem 2017, 9, 3997–
4004.
[36] T. Seidensticker, A. J. Vorholt, A. Behr, Eur. J. Lipid Sci. Technol. 2016,
118, 3–25.
[37] S. Pandey, S. H. Chikkali, ChemCatChem 2015, 7, 3468–3471.
[38] K. F. Muilwijk, P. C. J. Kamer, P. W. N. M. van Leeuwen, J. Am. Oil Chem.
Soc. 1997, 74, 223–228.
[39] E. N. Frankel, J. Am. Oil Chem. Soc. 1971, 48, 248–253.
[40] E. Benetskiy, S. Lühr, M. Vilches-Herrera, D. Selent, H. Jiao, L. Domke,
K. Dyballa, R. Franke, A. Börner, ACS Catal. 2014, 4, 2130–2136.
5
This article is protected by copyright. All rights reserved.