C O M M U N I C A T I O N S
Scheme 3 a
Scheme 4
a (a) cat. AgNO3, NBS (1.0 equiv), acetone, rt; (b) H2NNHTs (6 equiv),
AcONa (7 equiv), MeOH, ∆, 65% 2 steps; (c) E-1-bromopropene (1.2
equiv), t-BuLi (2.4 equiv), -78 °C; ZnCl2 (1.2 equiv), PdCl2(dppf) (0.01
equiv), THF, rt, 70%; (d) DIBAL, -95 °C; (e) Wittig, 62% for 2 steps; (f)
NaSEt (10 equiv), DMF, 90 °C, 67%; (g) O2, cat. Salcomine, DMF, rt,
49%; (h) toluene, 80 °C, 67%.
In summary, we have completed a stereocontrolled asymmetric
synthesis of the enantiomer of elisapterosin B, by a route that
features (a) a pinacol-type ketal rearrangement to transfer chirality,
(b) an IMDA reaction of an E,Z-diene to construct the elisabethin
skeleton, and (c) a biosynthesis-inspired oxidative cyclization of
the elisabethin precursor to elisapterosin B (Scheme 4).
the lactone carbonyl to alkyne 14 was achieved through an efficient
two-step sequence. Reduction of the lactone with DIBAL followed
by treatment of the crude lactol intermediate with the Seyferth
reagent9 furnished acetylene 14, poised for the pivotal pinacol-type
rearrangement.4 The aryl group migration was triggered upon heat-
ing the mesylate of 14 in methanol in the presence of excess calcium
carbonate as an acid scavenger to furnish methyl ester 16 in 72%
yield.
In preparation for the IMDA reaction (Scheme 3), the acetylene
was converted to the Z-bromoalkene (17), cross-coupling of which
with E-bromopropene afforded diene 18.10 The ester functionality
was transformed into the 2-methylpropenyl side chain via DIBAL
reduction followed by Wittig olefination. Regioselective demeth-
ylation11 of the more hindered methyl ether provided phenol 19,
which upon subjection to Salcomine-catalyzed oxidation12 yielded
quinone 20, required for the IMDA reaction. Upon heating in
toluene, compound 20 underwent a clean cycloaddition to afford
the expected endo adduct as a single diastereomer. Of the two endo
transition states, the one shown below avoids potentially severe
allylic strain between the C7-Me group and propenyl unit on the
cis-double bond. The assigned relative stereochemistry is consistent
with NOE results as well as with the further conversion of 21 to
elisapterosin B (vide infra).
Acknowledgment. We thank the donors of The American
Chemical Society Petroleum Research Fund for partial support of
this work and Pfizer Inc. (Japan) for partial postdoctoral fellowship
support to N.W. (3/2000-4/2002). We are grateful to Professor
A. D. Rodr´ıguez of the University of Puerto Rico for kindly
providing spectra of elisabethin A and elisapterosin B.
Supporting Information Available: 1H and 13C NMR spectra
(PDF) of all key intermediates (PDF). This material is available free
References
(1) (a) Rodr´ıguez, A. D. Tetrahedron 1995, 51, 4571-618. (b) Rodr´ıguez,
A. D.; Gonzalez, E.; Huang, S. D. J. Org. Chem. 1998, 63, 7083-7091.
(c) Rodr´ıguez, A. D.; Ramirez, C. Org. Lett. 2000, 2, 507-510. (d)
Rodr´ıguez, A. D.; Ramirez, C.; Medina, V.; Shi, Y. P. Tetrahedron Lett.
2000, 41, 5177-5180. (e) Rodr´ıguez, A. D.; Ramirez, C.; Rodr´ıguez, I.
I.; Barnes, C. L. J. Org. Chem. 2000, 65, 1390-1398. (f) Rodr´ıguez, A.
D.; Ramirez, C.; Shi, Y.-P. J. Org. Chem. 2000, 65, 6682-6687. (g)
Rodr´ıguez, A. D.; Shi, Y.-P. Tetrahedron 2000, 56, 9015-9023.
(2) Colombiasin: (a) Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.;
Kranich, R. Chem. Eur. J. 2001, 7, 5359-5371. (b) Nicolaou, K. C.;
Vassilikogiannakis, G.; Magerlein, W.; Kranich, R. Angew. Chem., Int.
Ed. 2001, 40, 2482-2486. (c) Harrowven, D. C.; Tyte, M. J. Tetrahedron
Lett. 2001, 42, 8709-8711. See also ref 3b.
(3) While this manuscript was in preparation, the syntheses of two other
elisabethane terpenes have appeared. (a) Elisabethin A: Heckrodt, T. J.;
Mulzer, J. J. Am. Chem. Soc. 2003, 125, 4680-4681 and references
therein. (b) Pseutopterosin B: Kim, A. I.; Rychnovsky, S. D. Angew.
Chem., Int. Ed. 2003, 42, 1267-1270. This paper also describes the
synthesis of colombiasin. (c) Miyaoka, H.; Honda, D.; Mitome, H.;
Yamada, Y. Tetrahedron Lett. 2002, 43, 7773-7775.
(4) (a) Tsuchihashi, G., Kitajima, K., Mitamura, M. Tetrahedron Lett. 1981,
22, 4305-4308. (b) Honda, Y.; Ori, A.; Tsuchihashi, G. Bull. Chem. Soc.
Jpn. 1987, 60, 1027-1036 and references therein.
(5) Gringore, O. H.; Rouessac, F. P. Org. Synth. 1985, 63, 99-102. We elected
to use L-glutamic acid rather than D-glutamic acid, since the latter is con-
siderably more costly (Aldrich: $31.80 for 1.0 kg vs $262.40 for 100 g).
(6) Acid chloride 11 is commercially available from Pfaltz & Bauer, Inc.
(7) (a) Schlegel, D. C.; Tipton, C. D.; Rinehart, K. L., Jr. J. Org. Chem.
1970, 35, 849-850. (b) Zhao, H.; Biehl, E. J. Nat. Prod. 1995, 58, 1970-
1974.
(8) Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F. T.; Miller, J. A.; Stoll,
A. T. Tetrahedron Lett. 1983, 24, 5181-5184.
(9) (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379-
1386. (b) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Chem. Commun.
1973, 151-152. (c) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Perkin
Trans. 1 1977, 869-874. (d) Gilbert, J. C.; Weerasooriya, U. J. Org.
Chem. 1979, 44, 4997-4998.
(10) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J.
Am. Chem. Soc. 1987, 109, 2393-2401.
(11) (a) Review: Evers, M. Chem. Scr. 1986, 26, 585-597. (b) Ahmad, R.;
Saa´, J. M.; Cava, M. P. J. Org. Chem. 1977, 42, 1228-1230.
(12) (a) Van Dort, H. M.; Geursen, H. J. Recl. TraV. Chim. Pays-Bas 1967,
86, 520-6. (b) Parker, K. A.; Petraitis, J. J. Tetrahedron Lett. 1981, 22,
397-400.
Selective hydrogenation of the Diels-Alder product (21),
accomplished in quantitative yield with Wilkinson’s catalyst, gave
22, which is just an epimerization and O-demethylation away from
ent-elisabethin A. Contrary to expectations, however, ene-dione 22
proved recalcitrant to deprotonation at C2: no epimerization was
evident even with sodium ethoxide in refluxing ethanol. On the
other hand, the elisabethin skeleton of 22 was primed for testing
the biosynthesis-based cyclization to the elisapterosins. The methyl
ether was smoothly cleaved upon heating with LiI in 2,6-lutidine
to furnish enol ent-1â in quantitative yield. The oxidative cyclization
of ent-1â to elisapterosin B (ent-2) took place smoothly and in high
yield upon treatment with Ce(NH4)2(NO3)6, followed by addition
of pyridine and triethylamine, to enolize the presumed diketone
intermediate. The 1H and 13C NMR spectra of our synthetic sample
perfectly matched those of natural elisapterosin B.
JA035898H
9
J. AM. CHEM. SOC. VOL. 125, NO. 43, 2003 13023