67.44, 72.08, 80.51, 83.36, 83.98, 105.30, 109.73, 112.78, 122.85 (q, JCF
=
336.8). [(Rs)-3]: 19F: 280.07, 1H: 1.32, 1.34, 1.42, 1.51 (4s, 12H,
OCMe2O), 3.90–4.20 (m, 4H, H-4, H-5, H-6), 4.70–4.76 (m, H-2, H-3),
5.96 (d, 1H, J = 3.6, H-1), 13C: 24.81, 26.15, 26.61, 26.75, 67.65, 71.83,
80.65, 83.61, 83.78, 105.39, 109.82, 112.78, 122.65 (q, JCF = 335.4). 4:
19F: 269.20, 13C: 28.8, 124.3 (q, JCF = 340), 172.4. 5: 19F: 277.0. 6: 19F:
279.43. 7: 19F: 280.75 and 281.40; [(Ss)-8]: 19F: 273.65, 1H: 4.48 (dd,
1H, J = 9.3, 4.5, H-5), 4.86 (t, 1H, J = 9.3, H-4), 5.39 (dd, 1H, J = 9.3,
4.5, H-5), 7.27–7.48 (m, 5H, Harom); 13C (C6D6): 53.0, 72.6, 123.3 (q, JCF
= 337.5), 126.9, 128.8, 128.9, 136.9, 155.2. [(Rs)-8]: 19F: 272.70; [(Ss)-9]:
278.21, 13C: 35.84, 36.53, 56.31, 68.14, 123.68 (q, JCF = 335.4), 126.98,
128.36, 128.81, 137.52, 156.47.
Scheme 4 Reagents and conditions: (i) CF3SOCl (1.1 eq.), thf, 278 °C, 6
h.
‡ Synthesis of (Ss)-8: To a solution of the (R)-(2)-4-phenyloxazolidin-
2-one (6 mmol) in thf (30 ml) under argon at 278 °C was added dropwise
4.4 ml of n-butyllithium (1.6 M in hexane, 7.0 mmol) over a 10 min period.
The solution was strirred at 278 °C for 30 min and then a solution of
CF3S(O)Cl (7.0 mmol) in toluene (10 ml) was added over a 30 min period.
After being stirred for 6 h at 278 °C, the solvent and volatile compounds
were removed. After extraction with toluene, a 93 : 7 mixture of (Ss)- and
(Rs)-diastereomers was obtained. Recrystallization from toluene–pentane (3
: 1) afforded pure (Ss)-8 in 75% yield. Mp 132–134 °C, [a]D = 2197 (c =
2, CHCl3).
§ Crystal data for [(Ss)-8]: C10H8F3NO3S, M = 279.23, monoclinic, a =
7.905(2), b = 8.231(2), c = 8.659(3) Å, b = 98.557(6)°, V = 557.1(3) Å3,
T = 223(2) K, space group P2(1), Z = 2, Mo-radiation, l = 0.71073 Å,
4183 reflections measured, 2409 [R(int) = 0.0180] independent reflections,
Flack parameter = 0.07(6), final R indices [I > 2s(I)]: R1 = 0.0284, wR2
= 0.0742, R indices (all data): R1 = 0.0294, wR2 = 0.0757. CCDC
b303574c/ for crystallographic data in CIF or other electronic format.
Fig. 1 Molecular structure of (Ss)-8.
(2)-4-benzyloxazolidin-2-one (58 : 42), (4R,5S)-(+)-4-methyl-
5-phenyloxazolidin-2-one (65 : 35), and (S)-(2)-4-isopropylox-
azolidin-2-one
(61
:
39).
However,
with
(R)-(2)-4-phenyloxazolidin-2-one not only an 86% de was
obtained, but the major diastereomer turned out to be crystalline
(Scheme 4). A single recrystallization from a toluene–pentane
mixture (3 : 1) was sufficient to isolate the desired tri-
fluoromethanesulfinic acid derivative 8 (75% yield) with a
diastereomeric purity greater than 98%.‡ The (Ss) configuration
at the sulfur atom has been determined by a single crystal X-ray
diffraction study (Fig. 1).§
The synthesis of diastereomerically pure sulfinylimide (Ss)-8
provides a basis for its use in asymmetric reactions (Scheme 5).
Derivative (Ss)-8 acts as a trifluoromethylsulfinylation agent.
For example, with (1R,2S,5R)-(2)-menthol, at 20 °C in ether in
the presence of triethylamine, the menthyl sulfinate (Ss)-2 was
isolated in 43% yield with a diastereoselectivity higher than
98%. On the other hand, (Ss)-8 can undergo a ring-opening
reaction. For example, it was successfully converted by
treatment with dimethylamine into the corresponding 2-ami-
noalcohol 9 ( > 98% de). The absolute configuration of the
products 2 and 9 was tentatively assigned on the basis of NMR
data.9 The retention of configuration at the sulfur centre has
been observed previously in the reaction of chiral N,N-
diisopropyl p-toluenesulfinamide with some alcohols catalyzed
by acids.14
1 Biomedical Frontiers of Fluorine Chemistry, eds. I. Ojima, J. M.
McCarthy and J. T. Welch, ACS Symposium Series, ACS, Washington,
D. C., 2000, pp. 1–24; Asymmetric Fluoroorganic Chemistry. Synthesis,
Applications, and Future Directions, ed. P. V. Ramachandran, ACS
Symposium Series 746, ACS, Washington, D. C., 2000, pp. 1–20.
2 (a) M. Mikolajczyk, J. Drabovicz and P. Kielbasinski, Chiral Sulfur
Reagents. Applications in Asymmetric and Stereoselective Synthesis,
CRC Press, Boca Raton, 1997; (b) M. Mikolajczyk and J. Drabowicz,
Top. Stereochem., 1982, 13, 334.
3 (a) S. M. Allin, in Organosulfur Chemistry. Synthetic and Ster-
eochemical Aspects, ed. P. Page, vol. 2, Academic Press, San Diego,
1998, pp. 41–61; (b) S. M. Allin, S. J. Shuttleworth and P. C. Bulman
Page, ibid, pp. 97–156; (c) P. Metzner and A. Thuillier, Sulfur Reagents
in Organic Synthesis, Academic Press, London, 1994, pp. 25–28; (d) S.
Oae, Organic Sulfur Chemistry: Structure and Mechanism, CRC Press,
Boca Raton, 1991, p. 67.
4 R. P. Singh and J. M. Shreeve, Chem. Commun., 2002, 1818; R. P.
Singh, G. Cao, R. L. Kirchmeier and J. M. Shreeve, J. Org. Chem., 1999,
64, 2873; V. N. Movchun, A. A. Kolomeitsev and Y. L. Yagupolskii, J.
Fluorine Chem., 1995, 70, 255.
5 T. Umemoto and T. Ishihara, J. Am. Chem. Soc., 1993, 115, 2156; D.
Hainzl, L. M. Cole and J. E. Casida, Chem. Res. Toxicol., 1998, 11,
1529; S.-L. Yu, D. T. Sauer and J. M. Shreeve, Inorg. Chem., 1974, 13,
484.
6 O. D. Gupta, W. A. Kamil and J. M. Shreeve, Inorg. Chem., 1985, 24,
2121; C. A. Burton and J. M. Shreeve, Inorg. Chem., 1977, 16, 1039.
7 T. Billard, A. Greiner and B. R. Langlois, Tetrahedron, 1999, 55, 7243;
C. Wakselman, M. Tordeux, C. Freslon and L. Saint-Jalmes, Synlett,
2001, 550.
8 J. Drabovicz, P. Kielbasinski and M. Mikolajczyk, in The Chemistry of
Sulfinic Acids, Esters and their Derivatives, ed. S. Patai, John Wiley &
Sons, Chichester, 1990, pp. 351–429; A. Nudelman, ibid, pp. 35–85; U.
Zoller, ibid, pp. 217–237.
9 I. Fernández, N. Khiar, J. M. Llera and F. Alcudia, J. Org. Chem., 1992,
57, 6789.
10 (a) D. N. Harpp and T. G. Back, J. Org. Chem., 1973, 38, 4328; (b) D.
N. Harpp, B. Friedlander, D. Mullins and S. M. Vines, Tetrahedron
Lett., 1977, 963.
Scheme 5 Reagents and conditions: (i) (1R,2S,5R)-(2)-menthol (3 eq.),
Et3N (1 eq.), ether, 20 °C, 24 h; (ii) Me2NH (neat), 210 °C, 1 h.
Further work is currently in progress to define the scope of
applications of diastereomerically pure N-trifluoromethane-
sulfinimides.
11 D. N. Harpp, S. M. Vines, J. P. Montillier and T. H. Chan, J. Org.
Chem., 1976, 41, 3987.
12 For a review see: D. J. Ager, I. Prakash and D. R. Schaad, Aldrichim.
Acta, 1997, 30, 3; D. J. Ager, I. Prakash and D. R. Schaad, Chem. Rev.,
1996, 96, 835.
13 D. A. Evans, M. M. Faul, L. Colombo, J. J. Bisaha, J. Clardy and J.
Cherri, J. Am. Chem. Soc., 1992, 114, 5997; J. P. Marino, S. Bogdan and
K. Kimura, J. Am. Chem. Soc., 1992, 114, 5566.
14 M. Mikolajczyk, J. Drabowicz and B. Bujnicki, Tetrahedron Lett., 1985,
26, 5699.
Notes and references
† Selected NMR [CDCl3, ppm (J/Hz)] data: [(Ss)-2]: 19F (ref. CFCl3):
281.32, 13C: 15.70, 20.75, 21.95, 23.37, 25.58, 31.94, 33.82, 42.29, 47.99,
84.60, 122.82 (q, JCF = 334.1). [(Rs)-2]: 19F: 280.71, 13C: 15.51, 20.82,
21.92, 23.18, 25.43, 32.05, 33.82, 48.18, 85.47, 122.88 (q, JCF = 335.4).
[(Ss)-3]: 19F: 281.08, 1H: 1.33, 1.35, 1.43, 1.51 (4s, 12H, OCMe2O),
3.94–4.25 (m, 4H, H-4, H-5, H-6), 4.61 (d, 1H, J = 3.6, H-2), 4.94 (d, 1H,
J = 2.7, H-3), 5.96 (d, 1H, J = 3.6, H-1), 13C: 24.84, 26.15, 26.61, 26.75,
CHEM. COMMUN., 2003, 1680–1681
1681