mono-borylation of N-Me-carbazole using BCl3/AlCl3/Me2Ntol
(1 : 1.1 : 1.3) required 14 h for complete borylation at a 0.1 mol
scale, producing 22 g of 4m post esterification (76% isolated
yield). Diborylation of N-Me-carbazole was realised using a
small excess, 2.5 : 2.75 : 2.625 BCl3 :AlCl3 :Me2NTol, with 4d
isolated in moderate yield. Application of related conditions to
Ph2NTol resulted in high yielding diborylation to produce 5d.
The di-borylation of 4 and 5 occurs despite the presence of
a –BCl2 moiety which will electronically deactivate the arene.19
The borylating species containing Me2NTol is more reactive
than [CatB(amine)]+ and 1, which do not diborylate 4 and 5.
The enhanced reactivity of BCl3/AlCl3/Me2Ntol also enables
the rapid borylation of thieno-[2,3,b]-thiophene, 7, which furn-
ished 7m in good yield post esterification (Table 1). Further-
more the BCl3/AlCl3/Me2Ntol reagent combination diborylates
2,20-dithiophene producing 5,50-(BCl2)2-2,20-dithiophene regio-
selectively in one step, whereas only monoborylation occurs even
using excess 1. Subsequent esterification produces 6d in high
isolated yield and purity (Table 1). Borylated carbazoles, triaryl-
amines and thiophenes are extremely important in organic
electronic applications, both in their own right,20 and as Suzuki–
Miyaura cross-coupling precursors, a process used extensively to
form extended p conjugated structures.21
To demonstrate the applicability of this process to signifi-
cantly less activated arenes m-xylene was borylated by
BCl3/AlCl3/Me2Ntol at 140 1C in C6H4Cl2 (m-xylene has
Mayr nucleophilicity values, N and sN, of ꢀ3.54 and 1.62,
respectivley).22 This produced two isomers post esterification,
the expected 1,3-Me2-4-BPin-C6H3 isomer and 1,3-Me2-
5-BPin-C6H3. The latter is formed from Lewis acid initiated
isomerisation of m-xylene.23 Pleasingly the enhanced borylating
reactivity does not reduce functional group tolerance or
regioselectivity; for example ether moieties remain compatible
(5-MeO-N-TIPS-indole, 8 is borylated at the C3 position and
esterified in high isolated yield) while 3-decyl-thiophene and
2-hexyl thiophene are both borylated regioselectively at C5
to provide 9m and 10m, respectively in good yield. It is
noteworthy that borylation of 3-decyl thiophene proceeds at
the less hindered C5 position and not at the electronically
favoured C2 position indicating that electrophilic borylation
using Me2NTol/BCl3/AlCl3 operates under synergic electronic
and steric control.
We gratefully acknowledge the Royal Society for the award
of a University Research Fellowship (M.J.I.), the EPSRC-KTA
(M.D.H.) and the University of Manchester.
Notes and references
1 D. Hall, Boronic Acids: Preparation, Applications in Organic
Synthesis and Medicine, Wiley-VCH, 2005.
2 E. Tyrrell and P. Brookes, Synthesis, 2004, 469.
3 For recent reviews of iridium catalyzed direct borylation see: (a) I.
A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and
J. F. Hartwig, Chem. Rev., 2010, 110, 890; (b) J. F. Hartwig, Chem.
Soc. Rev., 2011, 40, 1992.
4 A. DelGrosso, C. A. Muryn, R. G. Pritchard and M. J. Ingleson,
Organometallics, 2010, 29, 241.
5 A. DelGrosso, P. J. Singleton, C. A. Muryn and M. J. Ingleson,
Angew. Chem., Int. Ed., 2011, 50, 2102.
6 A. Prokofjevs, J. W. Kampf and E. Vedejs, Angew. Chem., Int. Ed.,
2011, 50, 2098.
7 S. Paul, G. A. Chotana, D. Holmes, R. C. Reichle, R. E. Maleczka
Jr. and M. R. Smith, III, J. Am. Chem. Soc., 2006, 128, 15552.
8 J. Takagi, K. Sato, J. F. Hartwig, T. Ishiyama and N. Miyaura,
Tetrahedron Lett., 2002, 43, 5649.
9 N. Ishida, T. Moriya, T. Goya and M. Murakami, J. Org. Chem.,
2010, 75, 8709.
10 P. Koelle and H. Noth, Chem. Rev., 1985, 85, 399.
¨
11 G. E. Ryschkewitsch and J. W. Wiggins, J. Am. Chem. Soc., 1970,
92, 1790.
12 T. S. De-Vries and E. Vedejs, Organometallics, 2007, 26, 3079.
13 (a) For borocations pre 2005 see W. E. Piers, S. C. Bourke and
K. D. Conroy, Angew. Chem., Int. Ed., 2005, 44, 5016–5036; (b) For
Borenium cations post 2005: C.-W. Chiu and F. P. Gabbai, Organo-
metallics, 2008, 27, 1657; (c) T. Matsumoto and F. P. Gabbai,
Organometallics, 2009, 28, 4252; (d) M. K. Uddin, Y. Nagano,
R. Fujiyama, S.-I. Kiyooka, M. Fujio and Y. Tsuno, Tetrahedron
Lett., 2005, 46, 627; (e) D. Vidovic, M. Findlater and A. H. Cowley,
J. Am. Chem. Soc., 2007, 129, 8436–8437; (f) M. A. Dureen,
A. Lough, T. M. Gilbert and D. W. Stephan, Chem. Commun.,
2008, 4303; (g) C. Bonnier, W. E. Piers, M. Parvez and
T. S. Sorensen, Chem. Commun., 2008, 4593; (h) T. S. De Vries,
A. Prokofjevs, J. N. Harvey and E. Vedejs, J. Am. Chem. Soc., 2009,
131, 14679; (i) A. J. V. Marwitz, J. T. Jenkins, L. N. Zakharov and
S.-H. Liu, Angew. Chem., Int. Ed., 2010, 49, 7444; (j) Y. Hayashi,
Y. Segawa, M. Yamashita and K. Nozaki, Chem. Commun., 2011,
47, 5888; (k) C. I. Someya, S. Inoue, C. Prasang, E. Irran and
M. Dreiss, Chem. Commun., 2011, 47, 6599; (l) D. McArthur,
C. P. Butts and D. M. Lindsay, Chem. Commun., 2011, 47, 6650;
(m) A. J. V. Marwitz, J. T. Jenkins, L. N. Zakharov and S.-Y. Liu,
Organometallics, 2011, 30, 52; (n) Y. Wang and G. H. Robinson,
Inorg. Chem., 2011, ASAP article; (o) B. Ines, M. Patil, J. Carreras,
R. Goddard, W. Thiel and M. Alcarazo, Angew. Chem. Int. Ed.,
2011, 50, 8400.
14 W. F. Schneider, C. K. Narula, H. Noth and B. E. Bursten, Inorg.
Chem., 1991, 30, 3919.
¨
In summary, electrophilic borylation can be readily scaled
using less rigorous conditions and only requires inexpensive
materials commercially available in bulk quantities. Borylation
with BCl3 based electrophiles proceeds under ambient condi-
tions with pinacol-boronate esters isolated with excellent
regioselectivity and good yield. BCl3 derived boron electro-
philes are more reactive than [CatB(amine)]+ derivatives, able
to diborylate a range of arenes, whilst displaying comparable
functional group tolerance. Compounds 4d–6d are representative
of important precursors extensively used in the production of
organic electronic materials. Before this work synthetic routes
to these diborylated complexes were inefficient, proceeding via
aryl-halide intermediates and using cryogens and hard organo-
metallic reagents.
15 E. L. Muetterties, J. Am. Chem. Soc., 1959, 81, 2597.
16 E. L. Muetterties, J. Am. Chem. Soc., 1960, 82, 4163.
17 G. A. Olah, Angew. Chem., Int. Ed. Engl., 1993, 32, 767.
18 (a) B. W. Benton and J. M. Miller, Can. J. Chem., 1974, 52, 2866;
(b) M. J. Farquharson and J. S. Hartman, Can. J. Chem., 1989,
67, 1711.
19 C. D. Entwistle and T. B. Marder, Chem. Mater., 2004, 16, 4574.
20 Boron containing oligomers: F. Jakle, Chem. Rev., 2010, 110, 3985.
¨
21 Organic materials synthesised using ArB(OR)2: (a) A. C. Grimsdale,
K. L. Chan, R. E. Martin, P. G. Jokisz and A. B. Holmes, Chem.
Rev., 2009, 109, 897; (b) S.-C. Lo and P. L. Burn, Chem. Rev., 2007,
107, 1097; (c) Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev.,
2009, 109, 5868; (d) H. N. Tsao, C. Yi, T. Moehl, J.-H. Yum,
S. M. Zakeeruddin, M. K. Nazeeruddin and M. Gra
Sus. Chem., 2011, 4, 591.
¨
tzel, Chem.
22 H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003, 36, 66.
23 J. F. Norris and G. T. Vaala, J. Am. Chem. Soc., 1939, 61, 2131.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12459–12461 12461