6292
T. Luker et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6288–6292
Golzio, L.; Giachetti, C.; Rocha, C.; Bernardinelli, G.; Filinchuk, Y.; Scheer, A.;
Schwarz, M. K.; Chollet, A. J. Med. Chem. 2008, 51, 2227; (c) Armer, R. E.; Ashton,
M. R.; Boyd, E. A.; Brennan, C. J.; Brookfield, F. A.; Gazi, L.; Gyles, S. L.; Hay, P. A.;
Hunter, M. G.; Middlemiss, D.; Whittaker, M.; Xue, L.; Pettipher, R. J. Med. Chem.
2005, 48, 6174; (d) Robarge, M. J.; Bom, D. C.; Nathan Tumey, L.; Varga, N.;
Gleason, E.; Silver, D.; Song, J.; Murphy, S. M.; Ekema, G.; Doucette, C.;
Hanniford, D.; Palmer, M.; Pawlowski, G.; Danzig, J.; Loftus, M.; Hunady, K.;
Sherf, B. A.; Mays, R. W.; Stricker-Krongrad, A.; Brunden, K. R.; Harrington, J. J.;
Bennani, Y. L. Bioorg. Med. Chem. Lett. 2005, 15, 1749; (e) Gervais, F. G.; Morello,
J.-P.; Beaulieu, C.; Sawyer, N.; Denis, D.; Greig, G.; Malebranche, A. D.; O’Neill, G.
P. Mol. Pharm. 2005, 67, 1834; (f) Stearns, B. A.; Baccei, C.; Bain, G.; Broadhead,
A.; Clark, R. C.; Coate, H.; Evans, J. F.; Fagan, P.; Hutchinson, J. H.; King, C.; Lee,
C.; Lorrain, D. S.; Prasit, P.; Prodanovich, P.; Santini, A.; Scott, J. M.; Stock, N. S.;
Truong, Y. P. Bioorg. Med. Chem. Lett. 2009, 19, 4647; (g) Sandham, D. A.;
Adcock, C.; Bala, K.; Barker, L.; Brown, Z.; Dubois, G.; Budd, D.; Cox, B.;
Fairhurst, R. A.; Furegati, M.; Leblanc, C.; Manini, J.; Profit, R.; Reilly, J.; Stringer,
R.; Schmidt, A.; Turner, K. L.; Watson, S. J.; Willis, J.; Williams, G.; Wilson, C.
Bioorg. Med. Chem. Lett. 2009, 19, 4794; (h) Tumey, L. N.; Robarge, M. J.;
Gleason, E.; Song, J.; Murphy, S. M.; Ekema, G.; Doucette, C.; Hanniford, D.;
Palmer, M.; Pawlowski, G.; Danzig, J.; Loftus, M.; Hunady, K.; Sherf, B.; Mays, R.
W.; Stricker-Krongrad, A.; Brunden, K. R.; Bennani, Y. L.; Harrington, J. J. Bioorg.
Med. Chem. Lett. 2010, 20, 3287; (i) Gallant, M.; Beaulieu, C.; Berthelette, C.;
Colucci, J.; Crackower, M. A.; Dalton, C.; Denis, D.; Ducharme, Y.; Friesen, R. W.;
Guay, D.; Gervais, F. G.; Hamel, M.; Houle, R.; Krawczyk, C. M.; Kosjek, B.; Lau,
S.; Leblanc, Y.; Lee, E. E.; Levesque, J.-F.; Mellon, C.; Molinaro, C.; Mullet, W.;
O’Neill, G. P.; O’Shea, P.; Sawyer, N.; Sillaots, S.; Simard, D.; Slipetz, D.; Stocco,
R.; Sorensen, D.; Truong, V. L.; Wong, E.; Wu, J.; Zaghdane, H.; Wang, Z. Bioorg.
Med. Chem. Lett. 2011, 21, 288; (j) Simard, D.; Leblanc, Y.; Berthelette, C.;
Zaghdane, M. H.; Molinaro, C.; Wang, Z.; Gallant, M.; Lau, S.; Thao, T.; Hamel,
M.; Stocco, R.; Sawyer, N.; Sillaots, S.; Gervais, F.; Houle, R.; Levesque, J.-F.
Bioorg. Med. Chem. Lett. 2011, 21, 841; (k) Bonafoux, D.; Abibi, A.; Bettencourt,
B.; Burchat, A.; Ericsson, A.; Harris, C. M.; Kebede, T.; Morytko, M.; McPherson,
M.; Wallace, G.; Wu, X. Bioorg. Med. Chem. Lett. 2011, 21, 1861; (l) Zaghdane, H.;
Boyd, M.; Colucci, J.; Simard, D.; Berthelette, C.; Leblanc, Y.; Wang, Z.; Houle, R.;
Levesque, J. F.; Molinaro, C.; Hamel, M.; Stocco, R.; Sawyer, N.; Sillaots, S.;
Gervais, F.; Gallant, M. Bioorg. Med. Chem. Lett. 2011, 21, 3471; (m) Crosignani,
S.; Jorand-Lebrun, C.; Page, P.; Campbell, G.; Colovray, V.; Missotten, M.;
Humbert, Y.; Cleva, C.; Arrighi, J.-F.; Gaudet, M.; Johnson, Z.; Ferro, P.; Chollet,
A. Med. Chem. Lett. 2011. ASAP.
tency and rate of metabolism (rat hep CLint), rendering it challeng-
ing to predict the profile of individual compounds before synthesis.
Based on the optimal in vitro properties the best 4 compounds
were progressed to in vivo profiling (Table 4). Highly polar com-
pounds such as these are at theoretical risk of low levels of perme-
ability and absorption.13 For example, passive permeability drops
considerably as log D falls below 1–2. The four compounds tested
had low to moderate clearance as expected from the low in vitro
rates of metabolism in rat hepatocytes, and low volumes of distri-
bution in common with many strong acids. As hoped, this drove
encouraging half-lives. Although compound 38 had very low oral
bioavailability, interestingly, given their low lipophilicity, the other
compounds (21, 22, 45) had much more promising oral PK profiles.
Compound 22 was particularly noteworthy having the longest ter-
minal half life coupled with high bioavailability.
Compound 22 successfully balanced a number of the desirable
in vitro and in vivo properties. Additional profiling showed no dis-
cernable activity at related receptors and enzymes such as DP1 and
arachidonic acid-mediated platelet aggregation (a marker of cyclo-
oxygenase 1 and TP activity) at concentrations of 1 lM or above.
Importantly, 22 was potent antagonist in a disease relevant cell
system, inhibiting DK-PGD2-induced CD11b expression in human
eosinophils (IC50 10 nM).
In summary, this lead optimization program generated a range
of high quality compounds which met the aspirations of high
CRTh2 potency, functional antagonism, low rates of metabolism,
no significant cyp 2C9 inhibition and high selectivity against re-
lated receptors. It was challenging to balance these important driv-
ers of quality given compounds of similar bulk properties often had
very different metabolic and selectivity profiles and the finding
that promising compounds often had low lipophilicity which sug-
gested that in vivo DMPK properties could be compromised.
In conclusion, a novel series of CRTh2 antagonists was opti-
mized from an initial hit via a variety of changes to the indole core,
linker atom and substituents on the pendant aryl. Compound 22
was progressed into development by AstraZeneca as AZD1981
and is currently in clinical studies.
9. (a) Chaudhry, P. S.; Cabrera, J.; Juliani, H. R.; Varma, S. D. Biochem. Pharmacol.
1983, 32, 1995; (b) Ratliff, D. M.; Martinez, F. J.; Vander Jagt, T. J.; Schimandle,
C. M.; Robinson, B.; Hunsaker, L. A.; Vander Jagt, D. L. Adv. Exp. Med. Biol. 1999,
463, 493; (c) Alexiou, P.; Pegklidou, K.; Chatzopoulou, M.; Nicolaou, I.;
Demopoulos, V. J. Curr. Med. Chem. 2009, 16, 734; (d) Mylari, B. L.; Larson, E.
R.; Beyer, T. A.; Zembrowski, W. J.; Aldinger, C. E.; Dee, M. F.; Siegel, T. W.;
Singleton, D. H. J. Med. Chem. 1991, 34, 108.
10. Purified human recombinant aldehyde reductase (ALR1) and aldose reductase
(ALR2) were kindly provided by Dr K. Bohren, Dept. of Pediatrics, Baylor College
of Medicine, Texas Children’s Hospital, Houston, Texas, USA. ALR1 and ALR2
activity was determined spectrophotometrically by monitoring the change in
absorbance at 340 nM due to the oxidation of the co-factor NADPH. Assays
were performed at 22 °C in U.V. clear polystyrene 96 well plates (Costar) and
Acknowledgments
the change in absorbance monitored using
a Spectramax 250 (Molecular
We acknowledge Elizabeth Akam, Fiona Bell, Angela Dymond,
Simon Barber, Tom McInally, Gwen McNicol, Tim Phillips, Wendy
Tomlinson, Carol Weyman-Jones and Sara Yendell for additional
data provision and Rachel Lowry for helpful advice during the
preparation of this manuscript.
Devices) spectrophotometer. For both assays, all reagents apart from NADPH
were incubated for 15 min. at 22 °C and the reaction started by the addition of
the co-factor. Absorbance readings were taken and the initial (linear) rate of
reaction recorded. For calculation of enzyme inhibition IC50 values, the initial
rates of reactions were corrected for non-enzymatic NADPH oxidation and the
percent inhibition at any given compound concentration was calculated
relative to the no-compound control. IC50 values are the mean of at least 2
separate determinations and were estimated from concentration effect curves
fitted to a 4 parameter logistic function.
References and notes
11. (a) Bonnert, R.; Brough, S.; Cook, T.; Dickinson, M.; Rasul, R.; Sanganee, H.;
Teague, S. PCT Int. Appl. WO2003101961, 2003; Chem. Abstr. 2003, 140, 16643.;
(b) Bonnert, R.; Dickinson, M.; Rasul, R.; Sanganee, H.; Teague, S. PCT Int. Appl.
WO2004007451, 2004; Chem. Abstr. 2004, 140, 111276.; (c) Bonnert, R.; Rasul,
R. PCT Int. Appl. WO2004106302, 2004; Chem. Abstr. 2004, 142, 23189.; (d)
Bonnert, R. V.; Cook, A. R.; Luker, T. J.; Mohammed, R. T.; Thom, S. PCT Int. Appl.
WO2005019171, 2005; Chem. Abstr. 2005, 142, 280051.; (e) Bonnert, R. V.;
Mohammed, R. T.; Teague, S. PCT Int. Appl. WO2005054232, 2005; Chem. Abstr.
2005, 143, 59979.; (f) Keegan, P.; Merifield, E.; Gill, D. PCT Int. Appl.
WO2006075139, 2006; Chem. Abstr. 2006, 145, 145540.; (g) Ainge, D.;
Butters, M.; Merifield, E.; Ramakrishnan, R.; Rayapati, R. N.; Sharma, P. R.;
Thomson, C. PCT Int. Appl. WO2011004182, 2001; Chem. Abstr. 2011, 154,
133093.
12. (a) Gassman, P. G.; van Bergen, T. J.; Gilbert, D. P.; Cue, B., Jr. J. Am. Chem. Soc.
1974, 96, 5495; (b) Baccolini, G.; Dalpozzo, R.; Todesco, P. E. J. Chem. Soc., Perkin
Trans. 1 1988, 4, 971.
13. (a) Testa, B.; Van de Waterbeemd, H.; Folkers, G.; Guy, R. Pharmacokinetic
Optimization in Drug Research: Biological, Physicochemical and Computational
Strategies; Wiley-VCH: Zurich, 2001. p 447–464; (b) Böcker, A.; Bonneau, P. R.;
Hucke, O.; Jakalian, A.; Edwards, P. J. ChemMedChem 2010, 5, 2102. and
references therein.
1. Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.;
Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Exp. Med.
2001, 193, 255.
2. Nagata, K.; Hirai, H.; Tanaka, K.; Ogawa, K.; Aso, T.; Sugamura, K.; Nakamura,
M.; Takano, S. FEBS Lett. 1999, 459, 195.
3. Xue, L.; Gyles, S. L.; Wettey, F. R.; Gazi, L.; Townsend, E.; Hunter, M. G.;
Pettipher, R. J. Immunol. 2005, 175, 6531.
4. Pettipher, R.; Hansel, T. T. Drug News Perspect. 2008, 21, 317.
5. Norman, P. Expert Opin. Invest. Drugs 2010, 19, 947.
6. (a) Sugimoto, H.; Shichijo, M.; Okano, M.; Bacon, K. B. Eur. J. Pharmacol. 2005,
524, 30; (b) Rosentreter, U.; Boshagen, H.; Seuter, F.; Perzborn, E.; Fiedler, V. B.
Arzneim.-Forsch. 1989, 39, 1519; (c) Shizuka, T.; Matsui, T.; Okamoto, Y.; Ohta,
A.; Shichijo, M. Cardiovasc. Drug Rev. 2004, 22, 71; (d) Aizawa, H.; Shigyo, M.;
Nogami, H.; Hirose, T.; Hara, N. Chest 1996, 109, 338.
7. Birkinshaw, T. N.; Teague, S. J.; Beech, C.; Bonnert, R. V.; Hill, S.; Patel, A.;
Reakes, S.; Sanganee, H.; Dougall, I. G.; Phillips, T. T.; Salter, S.; Schimdt, J.;
Arrowsmith, E. C.; Carrillo, J. J.; Bell, F.; Paine, S. W.; Weaver, R. Bioorg. Med.
Chem. Lett. 2006, 16, 4287.
8. (a) Ulven, T.; Kostenis, E. J. Med. Chem. 2005, 48, 897; (b) Crosignani, S.; Page, P.;
Missotten, M.; Colovray, V.; Cleva, C.; Arrighi, J.-F.; Atherall, J.; Macritchie, J.;
Martin, T.; Humbert, Y.; Gaudet, M.; Pupowicz, D.; Maio, M.; Pittet, P.-A.;