10.1002/anie.201912518
Angewandte Chemie International Edition
RESEARCH ARTICLE
[8] a) W. Jia, N. Jiao, Org. Lett. 2010, 12, 2000-2003; b) D. L. Priebbenow,
P. Becker, C. Bolm, Org. Lett. 2013, 15, 6155-6157.
[9] Y. Yan, M. Shi, B. Niu, X. Meng, C. Zhu, G. Liu, T. Chen, Y. Liu, RSC
Adv. 2016, 6, 36192-36197.
two equivalents of Cu(II) being required to form one equivalent of
product, analogous to the Chan-Evans-Lam type redox
mechanism.
[10] Z.-J. Liu, X. Lu, G. Wang, L. Li, W.-T. Jiang, Y.-D. Wang, B. Xiao, Y.
Fu, J. Am. Chem. Soc. 2016, 138, 9714-9719.
[11] a) J. Aubé, C. Fehl, R. Liu, M. C. McLeod, H. F. Motiwala, in
Comprehensive Organic Synthesis II (2nd Ed) (Ed.: P. Knochel), Elsevier,
Amsterdam, 2014, pp. 598-635; b) A. K. Ghosh, M. Brindisi, A. Sarkar,
ChemMedChem 2018, 13, 2351-2373.
[12] a) W. Zhao, R. P. Wurz, J. C. Peters, G. C. Fu, J. Am. Chem. Soc.
2017, 139, 12153-12156; b) R. Mao, A. Frey, J. Balon, X. Hu, Nat. Catal.
2018, 1, 120-126.
[13] a) Y. Liang, X. Zhang, D. W. C. MacMillan, Nature 2018, 559, 83-88;
b) Y. Sakakibara, E. Ito, T. Fukushima, K. Murakami, K. Itami, Chem. Eur.
J. 2018, 24, 9254-9258; For other radical amination of benzylic radicals
see: c) Z. K Ni, Q. Zhang, T. Xiong, Y. Y. Zheng, Y. Li, H. W. Zhang, J. P.
Zhang, Q. Liu, Angew. Chem. Int. Ed. 2012, 51, 1244- 1247; d) S. Kramer,
Org. Lett. 2019, 21. 65-69; For an example of benzylic amination via
fluorosulfonamide reagents see: e) Z. X. Fang, Y. Feng, H. Dong, D. S. Li,
T. D. Tang, Chem. Commun. 2016, 52, 11120-11123.
[14] a) P. J. Moon, Z. Wei, R. J. Lundgren, J. Am. Chem. Soc. 2018, 140,
17418-17422; b) P. J. Moon, A. Fahandej-Sadi, W. Qian, R. J. Lundgren,
Angew. Chem. Int. Ed. 2018, 57, 4612-4616; c) D. Kong, P. J. Moon, W.
Qian, R. J. Lundgren, Chem. Commun. 2018, 54, 6835-6838; For earlier
reports: d) R. Shang, Z. W. Yang, Y. Wang, S. L. Zhang, L. Liu, J. Am.
Chem. Soc. 2010, 132, 14391-14393; e) R. Shang, Z. Huang, L. Chu, Y.
Fu, L. Liu, Org. Lett. 2011, 13, 4240-4243; f) Z. R. Xu, Q. Wang, J. P. Zhu,
Angew. Chem. Int. Ed. 2013, 52, 3272-3276.
Conclusion
In summary, chemoselective N-benzylation of alkyl amines
can be achieved directly from native carboxylic acids in the
presence of protic or electrophilic groups via oxidative Cu-
catalysis. Building on previous studies that use aryl or alkynyl
acids as substrates, an ionic decarboxylation pathway enables
the liberation of a benzylic nucleophile to allow for efficient
oxidative trapping with basic alkyl amines, including those found
in complex pharmaceuticals. The scope of reaction partners
complements radical decarboxylative amination approaches. The
benzylic amine products can be expediently diversified,
showcasing this method’s potential in complex molecule
synthesis. Efforts are underway to apply this concept in the
development of related chemoselective ionic decarboxylative
cross-coupling reactions.
[15] Z.-J. Liu, X. Lu, G. Wang, L. Li, W.-T. Jiang, Y.-D. Wang, B. Xiao, Y.
Fu, J. Am. Chem. Soc. 2016, 138, 9714-9719.
[16] a) S. Sueki, Y. Kuninobu, Org. Lett. 2013, 15, 1544-1547; b) S. A.
Rossi, K. W. Shimkin, Q. Xu, L. M. Mori-Quiroz, D. A. Watson, Org. Lett.
2013, 15, 2314-2317.
Acknowledgements
We acknowledge NSERC Canada and the Canadian Foundation
for Innovation for support. We are grateful to NSERC Canada
(Discovery, Discovery Accelerator, and Idea to Innovation Grants
to R.J.L., CGS-D Fellowship to P.J.M), the Killam Trusts (I.W.K.
Fellowship to P.J.M) and the Canadian Foundation for Innovation
for support of this work. Dr. Shoshana Bachman is acknowledged
for helpful discussions.
[17] a) J. Zhang, Y. Shao, Y. Wang, H. Li, D. Xu, X. Wan, Org. Biomol.
Chem. 2015, 13, 3982-3987; b) J. Zhang, J. Jiang, Y. Li, Y. Zhao, X. Wan,
Org. Lett. 2013, 15, 3222-3225.
[18] a) See Figure S1 in the supporting information for additional
optimization details; b) See Figures S2 and S3 in the supporting
information; c) See Figure S4 for a more detailed analysis of the NH-
functional group compatibility of photoredox-type decarboxylative
aminations; d) Benzaldehyde can be trapped in ~80% yield, see Figure S8
for details.
[19] K. D. Collins, F. Glorius, Nat. Chem. 2013, 5, 597.
[20] D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443-4458.
[21] Selected synthetic methods to generate aryl acetates: a) M. Makosza,
Chem. Eur. J. 2014, 20, 5536-5545; b) M. R. Biscoe, S. L. Buchwald, Org.
Lett. 2009, 11, 1773-1775; c) M. Jørgensen, S. Lee, X. Liu, J. P. Wolkowski,
J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 12557-12565; d) L. J. Gooßen,
Chem. Commun. 2001, 669-670; e) P. J. Moon, S. Yin, R. J. Lundgren, J.
Am. Chem. Soc. 2016, 138, 13826-13829; f) G. Wu, Y. Deng, C. Wu, Y.
Zhang, J. Wang, Angew. Chem. Int. Ed. 2014, 53, 10510-10514; g) A. T.
Londregan, K. Burford, E. L. Conn, K. D. Hesp, Org. Lett. 2014, 16, 3336-
3339.
Keywords: amination • decarboxylation • copper •
chemoselectivity • oxidative coupling
[1] a) T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura,
B. D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801; b) T.
Patra, D. Maiti, Chem. Eur. J. 2017, 23, 7382-7401; c) J. Schwarz, B.
König, Green Chem. 2018, 20, 323-361.
[2] S. Arshadi, S. Ebrahimiasl, A. Hosseinian, A. Monfared, E. Vessally,
RSC Adv. 2019, 9, 8964-8976.
[22] S. J. Atkinson, P. E. Soden, D. C. Angell, M. Bantscheff, C. W. Chung,
K. A. Giblin, N. Smithers, R. C. Furze, L. Gordon, G. Drewes, I. Rioja, J.
Witherington, N. J. Parr, R. K. Prinjha, Medchemcomm 2014, 5, 342-351.
[23] a) E. Nyfeler, P. Renaud, Org. Lett. 2008, 10, 985-988; b) C. Liu, X.
Wang, Z. Li, L. Cui, C. Li, J. Am. Chem. Soc. 2015, 137, 9820-9823; c) Y.
Zhu, X. Li, X. Wang, X. Huang, T. Shen, Y. Zhang, X. Sun, M. Zou, S.
Song, N. Jiao, Org. Lett. 2015, 17, 4702-4705.
[3] C. C. Marvin, in Comprehensive Organic Synthesis II (Second Edition)
(Ed.: P. Knochel), Elsevier, Amsterdam, 2014, pp. 34-99.
[4] A. F. Abdel-Magid, S. J. Mehrman, Org. Proc. Res. Dev. 2006, 10, 971-
1031.
[5] a) J. X. Qiao, P. Y. S. Lam, in Boronic Acids, Wiley-VCH Verlag GmbH
& Co. KGaA, 2011, pp. 315-361; b) P. Y. S. Lam, in Synthetic Methods in
Drug Discovery, Vol 1, Vol. 52 (Eds.: D. Blakemore, P. Doyle, Y. Fobian),
2016, pp. 242-383; c) A. E. King, B. L. Ryland, T. C. Brunold, S. S. Stahl,
Organometallics 2012, 31, 7948-7957.
[24] L. Capaldo, L. Buzzetti, D. Merli, M. Fagnoni, D. Ravelli, J. Org. Chem.
2016, 81, 7102-7109.
[25] Benzyl radicals are established to dimerize in the absence of trapping
substrate, for a recent example see: a) D. W. Manley, J. C. Walton, Org.
Lett. 2014, 16, 5394-5397; For the decarboxylative benzylation of
aldehydes using aryl acetic acids and proceeding through a benzylic anion,
see: b) K. Donabauer, M. Maity, A. L. Berger, G. S. Huff, S. Crespi, B.
König, B. Chem. Sci. 2019 10, 5162-5166.
[6] a) Y. Zhang, S. Patel, N. Mainolfi, Chem. Sci. 2012, 3, 3196-3199; b)
W. J. Sheng, Q. Ye, W. B. Yu, R. R. Liu, M. Xu, J. R. Gao, Y. X. Jia,
Tetrahedron Lett. 2015, 56, 599-601; c) M. P. Drapeau, J. Bahri, D. Lichte,
L. J. Goossen, Angew. Chem. Int. Ed. 2019, 58, 892-896; d) P. Ruiz-
Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649; e) S.
Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, Angew. Chem. Int. Ed.
2017, 56, 16136-16179.
[7] a) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-
12649; b) J. Bariwal, E. Van der Eycken, Chem. Soc. Rev. 2013, 42, 9283-
9303.
[26] R. W. Evans, J. R. Zbieg, S. L. Zhu, W. Li, D. W. C. MacMillan, J. Am.
Chem. Soc. 2013, 135, 16074-16077.
This article is protected by copyright. All rights reserved.