Letters
J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 23 4825
Ta ble 2. In Vitro Profile (IC50, nM) for Compound 3, Taxol,a
Docetaxel,a Idn5109,a and 37a in MCF7 and MCF7-R Cell Lines
(6) IDN5109 is characterized by an improved preclinical profile in
terms of efficacy and tolerability. See: (a) Nicoletti, M. I.;
Colombo, T.; Rossi, C.; Monardo, C.; Stura, S.; Zucchetti, M.;
Riva, A.; Morazzoni, P.; Donati, M. B.; Bombardelli, E.; D’Incalci,
M.; Giavazzi, R. IDN5109, a taxane with oral bioavailability and
potent antitumor activity. Cancer Res. 2000, 60, 842-846.
(7) Kant, J .; Schwartz, W. S.; Fairchild, C.; Gao, Q.; Huang, S.; Long,
B. H.; Kadow, J . F.; Langley, D. R.; Farina, V.; Vyas, D.
Diastereoselective Addition of Grignard Reagents to Azetidine-
1,3-dione: Synthesis of Novel Taxol Analogues. Tetrahedron Lett.
1996, 37, 6495-6498.
Taxola Docetaxela IDN5109a
1.7 1.0 1.1
299 235 36
176 235 33
3b
37a
MCF7
MCF7-R
(R/S)
1.7 (0.54)
16 (7.8)
9.4 (14)
0.5
49
96
a
b
See ref 5a. Duplicate experiment in parentheses.
(8) Denis, J .-N.; Fkyerat, A.; Gimbert, Y.; Coutterez, C.; Mantellier,
P.; J ost, S.; Greene, A. E. Docetaxel (Taxote`re) derivatives: novel
NbCl3-based stereoslective approach to 2′-methylated docetaxel.
J . Chem. Soc., Perkin Trans. 1, 1995, 1811-1816.
more active than Ortataxel. On the basis of these
findings, we have focused our attention on compound 3
which was tested in additional cytotoxic experiments
on human breast cell lines, MCF-7 and its counterpart
MCF7-R resistant to doxorubicin. The obtained results
confirmed the previous ones. The activity of 3 is
comparable to that of paclitaxel in the sensitive MCF7
cell line, while it was almost 20-fold more active than
paclitaxel against the resistant MCF7-R (Table 2).
Moreover, this compound was more potent than its 2′-
demethyl derivative 375a (Chart 3, Supporting Informa-
tion) and Ortataxel (IDN5109)5a in both the sensitive
and the Pgp positive, multidrug resistant cell lines,
associated with a lower R/S value.
Con clu sion s. Our results clearly outlined the ben-
eficial effect of the additional methyl substituent, hence
of the conformational restriction in the rotation around
the C2′-C′3 bond, on the cytotoxicity of the sensitive
cell lines A2780 and MCF7, and their resistant coun-
terparts. For this reason, the taxoids here tested are
characterized by low differential potencies, hence are
potential candidates to develop new drugs able to
overcome the resistant phenotype. However, mecha-
nisms through which this overcoming is obtained merit
further investigations. Also, further experiments are
actively underway to elucidate the in vivo antitumor
activities of these new molecules.
(9) Ojima, I.; Wang, T.; Delaloge, F. Extremely Stereoselective
Alkylation of 3-Silyloxy-â-lactams and Its Applications to the
Asymmetric Syntheses of Novel 2-Alkylisoserines, Their Dipep-
tides, and Taxoids. Tetrahedron Lett. 1998, 39, 3663-3666.
(10) In vitro studies evidentiated that taxanes derived from baccatin
III or 14â-OH-baccatin III 1,14-carbonate, which bear a hetero-
aromatic group at the 3′ position, display superior cytotoxic
activity with respect to taxol. See: (a) ref 5a. (b) Georg, G. I.;
Harriman, G. C. B.; Hepperle, M.; Clowers, J . S.; Vander Velde,
D. G.; Himes, R. H. Synthesis, Conformational analysis, and
biological Evaluation of Heteroaromatic Taxanes. J . Org. Chem.
1996, 21, 2664-2676.
(11) (a) Ojima, I.; Habus, I.; Zhao, M.; Georg, G. I.; J ayasinghe, R.
Efficient and Practical Asymmetric Synthesis of the Taxol C-13
Side Chain, N-Benzoyl-(2R,3S)-3-phenylisoserine, and Its Ana-
logues via Chiral 3-Hydroxyl-4-aryl-â-lactams Through Chiral
Ester Enolate - Imine Cyclocondensation. J . Org. Chem. 1991,
56, 1681-1684. (b) Holton, R. A. Method for Preparation of
Taxol. Eur. Pat. Appl. 1990; U.S. Patent 5,175,315, 1992; EP
400,971, 1990; Chem. Abstr. 1990, 114, 164568q.
(12) Kingston, D. G. I.; Chaudhary, A. G.; Gunatilaka, A. A. L.;
Middleton, M. L. Synthesis of Taxol from Baccatin III via an
Oxazoline Intermediate. Tetrahedron Lett. 1994, 35, 4483-4484.
(13) For the synthesis of 7-Tes-baccatin III, see: Kant, J .; O’Keffe,
W. S.; Chen, S.-H.; Farina, V.; Fairchild, C.; J ohnston, K.;
Kadow, J . F.; Long, B. H.; Vyas, D. A Chemoselective Approach
to Functionalize the C-10 Position of 10-Deacetylbaccatin III.
Synthesis and Biological Properties of Novel C-10 Taxol Ana-
logues. Tetrahedron Lett. 1994, 35, 5543-5546. (b) For the
synthesis of 7-Tes-14â-hydroxy-baccatin III 1,14-carbonate, see
ref 15a.
(14) (a) Barbaro, G.; Battaglia, A.; Guerrini, A.; Bertucci, (3R)-Chiral
Control of 3-Alkyl-3-hydroxy-â-lactams via Addition Reaction of
Imines to Enolates of 1,3-Dioxolan-4-ones. J . Org. Chem. 1999,
64, 4643-4651. (b) Barbaro, G.; Battaglia, A.; Di Giuseppe, F.;
Giorgianni, P.; Guerrini, A.; Bertucci, C.; Geremia S. New
efficient synthesis of (3R, 4S)-3-methyl-3-hydroxy-4-phenyl-â-
lactam. Tetrahedron Asymmetry 1999, 10, 2765-2773.
(15) However, it is possible to obtain the enantiomerically pure
(2S,5S)-isomer by repeated crystallizations.
Su p p or tin g In for m a tion Ava ila ble: Experimental de-
tails for the new compounds, Tables 1S and 2S, Figure 1, and
Chart 3. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces
(1) (a) Taxol: Science and Applications; Suffness, M., Ed.; CRC
Press: New York, 1995. (b) The Chemistry and Pharmacology
of Taxol and Related Compounds; Farina, V., Ed.; Elsevier: New
York, 1995.
(16) A similar loss of enantioselectivity was observed in the synthesis
of disubstituted (3R,4R)-1-methoxyphenyl-3-silyloxy-4-trifluoro-
methyl-â-lactam obtained via a different protocol. See: (a) Ojima,
I.; Slater, J . C. Synthesis of Novel 3-Trifluoromethyl Taxoids
Through Effective Kinetic Resolution of Racemic 4-CF3-â-Lac-
tams With Baccatins. Chirality, 1997, 9, 487-494. (b) Ojima,
I.; Inoue, T.; Chakravarty, S. Enantiopure fluorine-containing
taxoids: potent anticancer agents and versatile probes for
biomedical problems. J . Fluorine Chem. 1999, 97, 3-10.
(17) (a) Holton, R. A.; Biediger, R. J . U.S. Patent 5,243,045, 1993.
(b) Holton, R. A.; Biediger, R. J .; Boatman, P. D. In Taxol:
Science and Applications; Suffness, M., Ed.; CRC: New York,
1995.
(2) Casazza, A. M.; Fairchild, C. R. Paclitaxel (Taxol) Mechanism
of Resistance. In Drug Resistance Cancer Treatment and Re-
search; Freidreich, E. J ., M. D. Series Editor; Hait, W. N., Ed.;
Kluwer Academic Publishers: 1996; Chapter 6, pp 149-171.
(3) Gottesmann, M. M.; Pastan, I. Biochemistry of multidrug-
resistance mediated by the multidrug transporter. Annu. Rev.
Biochem. 1993, 62, 385-427.
(4) See, for example: (a) Reference 1. (b) Hepperle, M.; Georg, G. I.
Drugs Future 1994, 19, 573.
(5) (a) Ojima, I.; Slater, J . C.; Kuduk, S. D.; Takeuchi, C. S.; Gimi,
R. I.; Sun, C.-M.; Park, Y. H.; Pera, P.; Veith, J . M.; Bernacki,
R. J . Syntheses and Structure-Activity Relationships of Taxoids
Derived from 14â-Hydroxy-10 deacetylbaccatin III. J . Med.
Chem. 1997, 40, 267-278. (b) Distefano, M.; Scambia, G.; Ferlini,
C.; Gaggini, C.; DeVincenzo, R.; Riva, A.; Bombardelli, E.;
Ojima, I.; Fattorossi, A.; Panici, P. B.; Mancuso, S. Anti-
proliferative activity of a new class of taxanes (14)-beta-hydroxy-
10-deacetylbaccatin III derivatives on multidrug-resistance-
positive human cancer cells international. J . Cancer 1997, 72,
844-850.
(18) Ojima, I.; Slater, J . C.; Pera, P.; Veith, J . M.; Abouabdellah, A.;
Be´gue´, J .-P.; Bernacki, R. J . Synthesis and biological activity of
novel 3′-trifluoromethyl taxoids. Bioorg. Med. Chem. Lett. 1997,
7, 133-138.
(19) Battaglia, A.; Barbaro, G.; Giorgianni, P.; Guerrini, A.; Pepe, A.
1′-Azido- and 1′-amino-1,3-dioxolan-4-ones. Tetrahedron Asym-
metry 2001, 12, 1015-1023.
J M034146V