2582
Y. Kato et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2579–2583
suggested to be important for antagonistic activity, and
further investigations of SAR studies are in progress.
120
100
80
60
40
20
0
Acknowledgements
The authors are grateful to Dr. K. Takenouchi and Dr.
S. Ishizuka (Teijin Pharma) for their generous supply of
TEI-9647. The authors also thank Ms. Kawachi and
Prof. H. Kagechika for their technical support on bio-
logical experiments and their helpful discussions. The
work described in this paper was partially supported by
Grants-in-Aid for Scientific Research from the ministry
of Education, Science, Sports and Culture, Japan, and
the fund from the Mochida Memorial Foundation for
Medicinal and Pharmaceutical Research.
1 (10-8 M)
-7
-7
10-7 3 x 10 10-6
10-7 3 x 10 10-6
References and notes
5a (M)
3 (M)
1. (a) Vitamin D Physiology, Molecular Biology, and Clinical
Applications; Holick, M. F., Ed.; Humana: Totowa, 1999;
(b) Bouillon, R.; Okamura, W. H.; Norman, A. W.
Endocr. Rev. 1995, 16, 200.
Figure 1. Effects of 5a on 1-induced HL-60 cell differentiation as
examined with NBT-reducing activity assay. HL-60 cells were treated
with 5a or TEI-9647 (3) in the presence of 10ꢁ8 M 1 for 96 h, and NBT-
reducing activity was examined. The activity of each analog was nor-
malized to the result obtained for 1, which was set to 100%.
2. Moras, D.; Gronemeyer, H. Curr. Opin. Cell. Biol. 1998,
10, 384.
3. (a) Brzozowski, A. M.; Pike, C. W.; Dauter, Z.; Hubbard,
€
€
R. E.; Bonn, T.; Engstrom, O.; Ohman, L.; Greene, G. L.;
Gustafsson, J.-A.; Carlquist, M. Nature 1997, 389, 753; (b)
induced cell differentiation even at the high concentra-
tion (data not shown).
ꢀ
Carlberg, C. J. Cell. Biochem. 2003, 88, 274.
4. Rochel, N.; Wurtz, J. M.; Mitschler, A.; Klaholz, B.;
Moras, D. Mol. Cell 2000, 5, 173.
These results prompted us to explore the possibilities of
these analogs, especially 4a and 5a, as antagonists to
VDR. Thus, we next examined the inhibitory activity of
the compounds on HL-60 cell differentiation induced by
10ꢁ8 M 1,25-D3 (1), using the NBT reducing activity
method.18 The analogs 4a and 5a inhibited the cell dif-
ferentiation induced by 1 at 10ꢁ6 M with the potency of
12% and 47%, respectively. Especially, 5a inhibited the
cell differentiation with almost comparable efficacy to
that of TEI-9647 (3) (Fig. 1). Those biological data,
though preliminary, show that the newly developed
analogs DLAM 4a and 5a are new antagonists of
1,25-D3 (1). To elicit the antagonistic activity, the ꢁSꢀ
configurations at C23 and C25 of DLAM seem to be
crucial, and the bulkiness of the substituent on nitrogen
also seems to be an important factor (4a vs 5a). These
facts strongly suggest that the substituent on nitrogen
interacts with helix-12 and control its folding as anta-
gonistic positions, as expected.
5. (a) Menaa, C.; Barsony, J.; Reddy, S. V.; Cornish, J.;
Cundy, T.; Roodman, G. D. J. Bone Miner. Res. 2000, 15,
228; (b) Kurihara, N.; Reddy, S. V.; Menaa, C.; Anderson,
D.; Roodman, G. D. J. Clin. Invest. 2000, 105, 607; (c)
Leach, R. J.; Roodman, G. D. J. Clin. Endocrinol. Metab.
2001, 86, 24; (d) Reddy, S. V.; Kurihara, N.; Menaa, C.;
Landucci, G.; Forthal, D.; Koop, B. A.; Windle, J. J.;
Roodman, G. D. Endocrinology 2001, 142, 2898; (e)
Friedrichs, W. E.; Reddy, S. V.; Bruder, J. M.; Cundy, T.;
Cornish, J.; Singer, F. R.; Roodman, G. D. J. Bone Miner.
Res. 2002, 17, 145.
6. (a) Herdick, M.; Steinmeyer, A.; Carlberg, C. J. Biol.
Chem. 2000, 275, 16506; (b) Herdick, M.; Steinmeyer, A.;
Carlberg, C. Chem. Biol. 2000, 7, 885; (c) Bury, Y.;
Steinmeyer, A.; Carlberg, C. Mol. Pharmacol. 2000, 58,
1067; (d) Toell, A.; Gonzalez, M. M.; Ruf, D.; Steinmeyer,
A.; Ishizuka, S.; Carlberg, C. Mol. Pharmacol. 2001, 59,
€ €
€
€
€
€
1478; (e) Vaisanen, S.; Perakyla, M.; Karkkainen, A.;
Steinmeyer, A.; Carlberg, C. J. Mol. Biol. 2002, 315, 229.
7. (a) Miura, D.; Manabe, K.; Ozono, K.; Saito, M.; Gao,
Q.; Norman, A. W.; Ishizuka, S. J. Biol. Chem. 1999, 274,
16392; (b) Miura, D.; Manabe, K.; Ozono, K.; Saito, M.;
Gao, Q.; Norman, A. W.; Ishizuka, S. Biol. Chem. 1999,
274, 32376.
4. Conclusions
8. Ishioka, T.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y.
Bioorg. Med. Chem. Lett. 2003, 13, 2655.
9. Ishizuka, S.; Norman, A. W. J. Steroid. Biochem. 1986, 25,
505.
10. (a) Kubodera, N.; Miyamoto, K.; Akiyama, M.; Mat-
sumoto, M.; Mori, T. Chem. Pharm. Bull. 1991, 39, 3221;
(b) Konno, K.; Ojima, K.; Hayashi, T.; Tanabe, M.;
Takayama, H. Chem. Pharm. Bull. 1997, 45, 185; (c)
We have developed the DLAMs as a novel series of
1,25-D3 analogs. Some members of this series, 4a and
5a, show antagonistic activity against 1, thereby pro-
viding the third example of 1,25-D3 antagonist analogs.
The configuration of the lactam structure and the
bulkiness of the substituents on nitrogen of DLAM are