Syn th esis of Cyclic Hexa m er ic P or p h yr in Ar r a ys. An ch or s for
Su r fa ce Im m obiliza tion a n d Colu m n a r Self-Assem bly
Kin-ya Tomizaki,† Lianhe Yu,† Lingyun Wei,‡ David F. Bocian,*,‡ and J onathan S. Lindsey*,†
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and
Department of Chemistry, University of California, Riverside, California 92521-0403
jlindsey@ncsu.edu; david.bocian@ucr.edu
Received J une 19, 2003
To investigate new architectures for the self-assembly of multiporphyrin arrays, a one-flask synthesis
of a shape-persistent cyclic hexameric array of porphyrins was exploited to prepare six derivatives
bearing diverse pendant groups. The new arrays contain 6-12 carboxylic acid groups, 12 amidino
groups, 6 thiol groups, or 6 thiol groups and 6 carboxylic acid groups in protected form (S-acetylthio,
TMS-ethyl, TMS-ethoxycarbonyl). The arrays contain alternating Zn and free base (Fb) porphyrins
or all Zn porphyrins. The one-flask synthesis entails a template-directed, Pd-mediated coupling of
a p/p′-substituted diethynyl Zn porphyrin and a m/m′-substituted diiodo Fb porphyrin. The porphyrin
building blocks (trans-A2B2, trans-AB2C) contain the protected pendant groups at nonlinking meso
positions. A self-assembled monolayer (SAM) of a Zn3Fb3 cyclic hexamer containing one thiol group
on each porphyrin was prepared on a gold electrode and the surface-immobilized architecture was
examined electrochemically. Together, the work reported herein provides cyclic hexameric porphyrin
arrays for studies of self-assembly in solution or on surfaces.
In tr od u ction
porphyrins joined via diphenylethyne linkers (Scheme
1).10 This cyclic array is shape persistent with a cavity
diameter of 30-35 Å. The cyclic hexamer was prepared
by a one-flask reaction of a diethynyl zinc porphyrin (Zn -
2) and a diiodo free base porphyrin (3) in the presence of
a tripyridyl template (4). The cyclic hexamer also has
been prepared in a stepwise manner where the template
is used in the final reaction of components (pentamer +
monomer, or trimer + trimer) to create the hexamer.11
The template is essential for the one-flask synthesis and
can be used to augment the stepwise synthesis. Regard-
less of approach, the template is displaced upon chro-
matographic workup of the reaction mixture. The cyclic
hexamer (bearing mesityl groups at all nonlinking por-
phyrin meso-positions) is termed Zn 3F b3-1a (previously
termed cyclo-Zn3Fb3U-p/m). The cyclic hexamer contain-
ing all Zn porphyrins (Zn 6-1a ) is readily formed by
metalation. Gossauer has prepared an even larger cyclic
hexameric array incorporating arylethyne linkers.12
The primary motivation for preparing the cyclic hex-
amers was to study light-harvesting phenomena. The
A wide variety of multiporphyrin arrays have been
prepared for studies related to biological and materials
chemistry.1-6 Cyclic architectures of porphyrins in de-
fined 3-dimensional structures have been employed in
diverse studies7 and are members of a broader class of
shape-persistent nanoscale molecular architectures that
have elicited wide interest.8 Anderson and Sanders
pioneered the synthesis of cyclic arrays (primarily trimers
and tetramers) of porphyrins joined by diphenylethyne
or diphenylbutadiyne linkers and investigated their
host-guest properties.7,9 We extended this line of work
to the synthesis of a cyclic hexameric porphyrin array
comprised of alternating Zn porphyrins and free base (Fb)
† North Carolina State University.
‡ University of California.
* Corresponding author.
(1) Harvey, P. D. In The Porphyrin Handbook; Kadish, K. M., Smith,
K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2003; Vol.
18, pp 63-250.
(2) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Chem.
Rev. 2001, 101, 2751-2796.
(3) Chambron, J .-C.; Heitz, V.; Sauvage, J .-P. In The Porphyrin
Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic
Press: San Diego, CA, 2000; Vol. 6, pp 1-42.
(4) Imamura, T.; Fukushima, K. Coord. Chem. Rev. 2000, 198, 133-
156.
(5) Wojaczynski, J .; Latos-Grazynski, L. Coord. Chem. Rev. 2000,
204, 113-171.
(6) Chou, J .-H.; Kosal, M. E.; Nalwa, H. S.; Rakow, N. A.; Suslick,
K. S. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M.,
Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 6, pp
43-131.
(7) Sanders, J . K. M. In The Porphyrin Handbook; Kadish, K. M.,
Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000;
Vol. 3, pp 347-368.
(8) (a) Moore, J . S. Acc. Chem. Res. 1997, 30, 402-413. (b) Grave,
C.; Schlu¨ter, A. D. Eur. J . Org. Chem. 2002, 3075-3098. (c) Ho¨ger, S.
J . Polym. Sci.: Part A: Polym. Chem. 1999, 37, 2685-2698.
(9) (a) Anderson, H. L.; Sanders, J . K. M. J . Chem. Soc., Chem.
Commun. 1989, 1714-1715. (b) Anderson, H. L.; Sanders, J . K. M.
Angew. Chem., Int. Ed. Engl. 1990, 29, 1400-1403. (c) Anderson, H.
L.; Sanders, J . K. M. J . Chem. Soc., Chem. Commun. 1992, 946-947.
(d) Walter, C. J .; Anderson H. L.; Sanders J . K. M. J . Chem. Soc., Chem.
Commun. 1993, 458-460. (e) Anderson, S.; Anderson, H. L.; Sanders,
J . K. M. Acc. Chem. Res. 1993, 26, 469-475. (f) Anderson, H. L.;
Bashall, A.; Henrick, K.; McPartlin, M.; Sanders, J . K. M. Angew.
Chem., Int. Ed. Engl. 1994, 33, 429-431. (g) Walter, C. J .; Sanders, J .
K. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 217-219. (h) Anderson,
S.; Anderson, H. L.; Bashall, A.; McPartlin, M.; Sanders, J . K. M.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1096-1099.
(10) Li, J .; Ambroise, A.; Yang, S. I.; Diers, J . R.; Seth, J .; Wack, C.
R.; Bocian, D. F.; Holten, D.; Lindsey, J . S. J . Am. Chem. Soc. 1999,
121, 8927-8940.
(11) Yu, L.; Lindsey, J . S. J . Org. Chem. 2001, 66, 7402-7419.
10.1021/jo034861c CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/17/2003
J . Org. Chem. 2003, 68, 8199-8207
8199