right-hand fragment 7 of batzelladine B (1) in 94% yield
with 10:1 stereoselectivity for forming the isomer having a
cis relationship of the angular hydrogens (Scheme 1).6a If
the nucleophilic component in such a reaction were a bis-
â-ketoester, Biginelli condensation with a tethered guanidine
aldehyde should rapidly assemble hexacyclic bisguanidine
analogues of complex batzelladines such as 9. Our initial
investigation of this proposal is the subject of this com-
munication.
Scheme 1. Single and Double Tethered Biginelli Reactions
Figure 1. Representative batzelladine alkaloids.
relationships would be greatly facilitated by a streamlined
synthesis of batzelladine-like bisguanidines. Herein we report
our initial investigations into the use of double tethered
Biginelli cyclizations7,8 to synthesize molecular architectures
that resemble naturally occurring batzelladine alkaloids.
The tethered Biginelli reaction has played a central role
in our laboratory’s total syntheses of crambescidin and
batzelladine alkaloids.6,7 For example, morpholinium acetate-
promoted condensation of guanidine aldehyde 4 with methyl
acetoacetate in trifluoroethanol (TFE) at 90 °C provided the
To study double tethered Biginelli cyclizations for ac-
cessing molecular architectures resembling naturally occur-
ring batzelladines, the series of bis-â-ketoesters summarized
in Figure 2 was prepared. These syntheses were ac-
complished using standard methods that exploited transfor-
mations developed by Taber9 and Wieler;10 experimental
details can be found in Supporting Information.
Exploratory investigations of double tethered Biginelli
condensations were carried out at 60 °C using the procedure
employed to form 7.6a Under these conditions, the reaction
of guanidine aldehyde 5 with bis-â-ketoester 6 produced the
double Biginelli product 9 in low yield, the major product
being the mono Biginelli adduct 8 (Scheme 1). However,
the yield of 9 was improved to 41% when 3.5-4 equiv of 5
were employed. Methanol, which appears to better dissolve
the Biginelli monoadduct, could also be used as the solvent.
Results of double tethered Biginelli condensations of two
representative tethered guanidine aldehydes and the series
of bis-â-ketoesters shown in Figure 2 are summarized in
Table 1. The reaction reported in entry 2 is typical, providing
two stereoisomeric bisguanidine products that could be
separated by HPLC. The major product 16, showing only
(5) For studies from other laboratories, see: (a) Murphy, P. J.; Williams,
H. L.; Hursthouse, M. B.; Abdul Malik, K. M. J. Chem Soc., Chem.
Commun. 1994, 119-121. (b) Rao, A. V. R.; Gurjar, M. K.; Vasudevan,
Chen, J.; Patil, A. D.; Freyer, A. J. Tetrahedron Lett. 1996, 37, 6977-
6980. (c) Snider, B. B.; Chen, J.; Patil, A. D.; Freyer, A. J. Tetrahedron
Lett. 1996, 37, 6977-6980. (d) Black, G. P.; Murphy, P. J.; Walshe, N. D.
A.; Hibbs, D. E.; Hursthouse, M. B.; Abdul Malik, K. M. A. Tetrahedron
Lett. 1996, 37, 6043-6946. (e) Louwrier, S.; Ostendorf, M.; Tuynman, A.;
Hiemstra, H. Tetrahedron Lett. 1996, 37, 905-908. (f) Snider, B. B.; Chen,
J. Tetrahedron Lett. 1998, 39, 5697-5700. (g) Black, G. P.; Murphy, P. J.;
Walshe, N. D. A. Tetrahedron 1998, 54, 9481-9488. (h) Black, G. P.;
Murphy, P. J.; Thornhill, A. J.; Walshe, N. D. A.; Zanetti, C. Tetrahedron
1999, 55, 6547-6554. (i) Duron, S. G.; Gin, D. Y. Org. Lett. 2001, 3,
1551-1554. (j) Nagasawa, K.; Koshino, H.; Nakata, T. Org. Lett. 2001, 3,
4155-4158. (k) Ishiwata, T.; Hino, T.; Koshino, H.; Hasimoto, Y.; Nakata,
T.; Nagasawa, K. Org. Lett. 2002, 4, 2921-2924.
(6) For our studies in this area, see: (a) Franklin, A. S.; Ly, S. K.; Mackin,
G. H.; Overman, L. E.; Shaka, A. J. J. Org. Chem. 1999, 64, 1512-1519.
(b) Cohen, F.; Overman, L. E.; Sakata, S. K. L. Org. Lett, 1999, 1, 2169-
2172. (c) Cohen, F.; Overman, L. E. J. Am. Chem. Soc. 2001, 123, 10782-
10783.
(7) For the use of tethered Biginelli condensations for stereocontrolled
assembly of decahydro- and octahydro-5,6,8b-triazaacenaphthalenes, see:
ref 6 and: (a) Overman, L. E.; Rabinowitz, M. H. J. Org. Chem. 1993, 58,
3235-3237. (b) Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A. J.
Am. Chem. Soc. 1995, 117, 2657-2658. (c) McDonald, A.; Overman, L.
E. J. Org. Chem. 1999, 64, 1520-1528. (d) Coffey, D. S.; McDonald, A.
I.; Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A. J. Am. Chem. Soc.
2000, 122, 4893-4903. (e) Coffey, D. S.; Overman, L. E.; Stappenbeck,
F. J. Am. Chem. Soc. 2000, 122, 4904-4914.
(9) Taber, D. F.; Amedio, J. C.; Patel, Y. K. J. Org. Chem. 1985, 50,
3618-3619.
(10) Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702-6704.
(8) For a recent review of the classical Biginelli reaction, see: Kappe,
O. C. Acc. Chem. Res. 2000, 33, 879-888.
4486
Org. Lett., Vol. 5, No. 23, 2003