10.1002/anie.201703186
Angewandte Chemie International Edition
COMMUNICATION
(5)
(6)
O. Lahtigui; F. Emmetiere; W. Zhang; L. Jirmo; S. Toledo-Roy; J. C.
Hershberger; J. M. Macho; A. J. Grenning Angew. Chem. Int. Ed. 2016,
55, 15792.
on the conjugated dienone for substrate 6dd yielding product
10a. For the more strained scaffold 6kd, the bicyclo[3.2.1]octene
was most reactive yielding 10c. Also, the ketone could be
reduced using NaBH4 to prepare 10b. Finally, ring-opening/cross
metathesis could be performed on the bicyclo[3.2.1]octene core
yielding 10d.
(a) R. A. Craig, II.; J. L. Roizen; R. C. Smith; A. C. Jones; S. C. Virgil; B.
M. Stoltz Chem. Sci. 2017, 8, 507. (b) S.-Z. Peng; C.-K. Sha Org. Lett.
2015, 17, 3486. (c) C. M. Gampe; E. M. Carreira Angew. Chem. Int. Ed.
2011, 50, 2962. (d) C. Che; L. Liu; J. Gong; Y. Yang; G. Wang; J.
Quan; Z. Yang Org. Lett. 2010, 12, 488. (e) K. Michalak; M. Michalak; J.
J. Wicha J. Org. Chem. 2010, 75, 8337. (f) K. M. Brummond; D. Chen;
M. M. Davis J. Org. Chem. 2008, 73, 5064. (g) A. K. Miller; C. C.
Hughes; J. J. Kennedy-Smith; S. N. Gradl; D. Trauner J. Am. Chem.
Soc. 2006, 128, 17057. (h) S. Iimura; L. E. Overman; R. Paulini; A.
Zakarian J. Am. Chem. Soc. 2006, 128, 13095. (i) W. D. Shipe; E. J.
Sorensen J. Am. Chem. Soc. 2006, 128, 7025. (j) M. Mandal; H. Yun; G.
B. Dudley; S. Lin; D. S. Tan; S. J. Danishefsky J. Org. Chem. 2005, 70,
10619. (k) K. M. Brummond; D. Gao Org. Lett. 2003, 5, 3491.
(a) D. Marković; M. Kolympadi; B. Deguin; F.-H. Porée; M. Turks Nat.
Prod. Rep. 2015, 32, 230. (b) M. A. Vallim; J. E. Barbosa; D. N.
Cavalcanti; J. Campos De-Paula; V. A. G. Galvão da Silva; V. L.
Teixeira; I. C. N. de P. Paixão J. Med. Plants Res. 2010, 4, 2379. (c) A.
Gunduz; S. Turedi; R. M. Russell; F. A. Ayaz Clin. Toxicol. 2008, 46,
437. (d) S. Tremblay; C. Soucy; N. Towers; P. J. Gunning; L. Breau J.
Nat. Prod. 2004, 67, 838. (e) C.-Y. Duh; S.-K. Wang; M.-C. Chia; M. Y.
Chiang Tetrahedron Lett. 1999, 40, 6033. (f) G. R. Pettit; R. H. Ode; C.
L. Herald; R. B. Von Dreele; C. Michel J. Am. Chem. Soc. 1976, 98,
4677. (g) C. B. Rao; G. Trimurtulu; D. V. Rao; S. C. Bobzin; D. M.
Kushlan; D. J. Faulkner Phytochemistry 1991, 30, 1971. (h) X. Wei; I. I.
Rodriguez; A. D. Rodriguez; C. L. Barnes J. Org. Chem. 2007, 72, 7386.
(a) W. Zhang; I. Ghiviriga; A. J. Grenning Tetrahedron. In press. DOI:
10.1016/j.tet.2016.11.055 (b) P. V. Navaratne; A. J. Grenning Org.
Biomol. Chem. 2017, 15, 69. (c) P. Vertesaljai; P. V. Navaratne; A. J.
Grenning Angew. Chem. Int. Ed. 2016, 55, 317. (d) W.-B. Liu; N.
Okamoto; E. J. Alexy; A. Y. Hong; K. Tran; B. M. Stoltz J. Am. Chem.
Soc. 2016, 138, 5234. (e) R. B. Grossman; M. A. Varner J. Org. Chem.
1997, 62, 5235.
In conclusion, we have examined a new route to 6/7/5
tricycloalkane frameworks. The sequence hinged on the
development of poorly understood 3,3-dicyano-1,5-enyne Cope
rearrangement. We have developed conditions and outlined
current understanding and limitation for this transformation. Per
the inspiration of the route, we examined the synthesis of
diverse linear 6/7/5 tricycloalkanes and also prepared a highly
complex 6/6/7 tricycloalkane, all in four steps from
cycloalkanone, malononitrile, and two different propargyl-, allyl-,
and/or furan-containing electrophiles. Future directions include
target and analog synthesis, rendering the strategy asymmetric,
and further examination of the enyne Cope rearrangement to
identify many previously inaccessible allenes for processing into
polycycloalkane architectures by ring-forming reactions (e.g.
Diels-Alder and cycloisomerization).
(7)
Experimental Section
(8)
See the supporting information for detailed experimental procedures,
characterization data, and spectral reprints
Acknowledgements
(9)
(a) D. K. Black; S. R. Landor J. Chem. Soc. 1965, 6784. (b) W. D.
Huntsman; J. A. De Boer; M. H. Woosley J. Am. Chem. Soc. 1966, 88,
5846. (c) R. F. C. Brown; C. G. McAllan Aust. J. Chem. 1977, 30, 1747.
(d) K. A. Black; S. Wilsey; K. N. Houk J. Am. Chem. Soc. 1998, 120 ,
5622.
We thank the College of Liberal Arts and Sciences and the
Department of Chemistry at the University of Florida for start-up
funds.
(10) For a review of allenic-PKR see: B. Alcaide; P. Almendros Eur. J. Org.
Chem. 2004, 3377.
Keywords: Knoevenagel Adducts • 1,5-enyne Cope
rearrangement • allenic Pauson-Khand reaction • terpenoid
natural products
(11) For select examples of allenic-PKR in synthesis see: (a) L. Jørgensen;
S. J. McKerrall; C. A. Kuttruff; F. Ungeheuer; J. Felding; P. S. Baran,
Science 2013, 341, 878. (b) B. Wen; J. K. Hexum; J. C. Widen; D. A.
Harki; K. M. Brummond Org. Lett. 2013, 15, 2644. (c) T. Hirose; N.
Miyako-shi; C. J. Mukai Org. Chem. 2008, 73, 1061.
[1]
For reviews of natural products as pharmaceutical leads see: (a) M.
Huang; J.-J. Lu; M.-Q. Huang; J.-L. Bao; X.-P. Chen; Y.-T. Wang
Expert Opin. Investig. Drugs 2012, 21, 1801. (b) A. Ghantous; H. Gali-
Muhtasib; H. Vuorela; N. A. Saliba; N. Darwiche Drug Discov Today
2010, 15, 668. (c) G. Wang, W. Tang, R. R. Bidigare, in Nat. Prod.,
Springer, Berlin, 2005, pp. 197–227.
(12) A. J. Grenning Synlett 2017, 28, 633.
(13) For a review of [3,3] rearrangements in natural product synthesis see: E.
A. Ilardi, C. E. Stivala, A. Zakarian, Chem. Soc. Rev. 2009, 38, 3133–
3148.
(2)
(3)
B. Ganem; R. R. Franke J. Org. Chem. 2007, 72, 3981.
(14) D. Tejedor; G. Méndez-Abt; L. Cotos; F. García-Tellado Chem. Soc.
Rev. 2013, 42, 458.
Reviews of terpene synthesis: (a) D. J. Jansen; R. A. Shenvi, R Future
Med. Chem. 2014, 6, 1127. (b) D. Urabe; T. Asaba; M. Inoue Chem.
Rev. 2015, 115, 9207. (c) T. J. Maimone; P. S. Baran Nat Chem Biol
2007, 3, 396.
(15) C. Aubert; L. Fensterbank; P. Garcia; M. Malacria; A. Simonneau Chem.
Rev. 2011, 111, 1954.
(16) Heating 7a at 150 °C in toluene results in ~75% conversion (71%
isolated yield) to the Cope rearrangement product 7c.
(4)
(a) C. Cordier; D. Morton; S. Murrison; A. Nelson; C. O’Leary-Steele
Nat. Prod. Rep. 2008, 25, 719. (b) R. W. Huigens III; K. C. Morrison; R.
W. Hicklin; T. A. Flood Jr; M. F. Richter; P. J. Hergenrother Nat. Chem.
2013, 5, 195. (c) B. R. Balthaser; M. C. Maloney; A. B. Beeler; J. A.
Porco Jr; J. K. Snyder Nat. Chem. 2011, 3, 969. (d) M. C. McLeod; G.
Singh; J. N. Plampin III; D. Rane; J. L. Wang; V. W. Day; J. Aubé, Nat.
Chem. 2014, 6, 133.
(17) C. O. Kappe; S. S. Murphree; A. Padwa Tetrahedron 1997, 53, 14179.
(18) (a) A. Rudi; Y. Kashman J. Nat. Prod. 1992, 55, 1408. (b) S. Spa-dari;
F. Sala; G. Pedrali-Noy Trends Biochem. Sci. 1982, 7, 29. (c) M. Cueto;
P. R. Jensen; W. Fenical Org. Lett. 2002, 4, 1583.
This article is protected by copyright. All rights reserved.