efficient stabilization of the six-membered transition state by the
chiral enamine, which lowers the energy difference between the
possible transition states. In contrast, the high enantioselectivity of
the small peptide-catalyzed aldol reactions in water suggests that
the peptide bond of the natural catalyst is crucial in preserving a
stabilized transition state structure, were the Re-face of the chiral
enamine is approached by the Si-face of the acceptor aldehyde
(Fig. 1, II). This is plausibly accomplished by stabilization of the
generated alkoxide of the product by hydrogen bonding by the
peptide backbone and the formation of a charge relay system that
increases the Brønstedt acidity of the di- and tri-peptides. In fact,
a charge relay system is very important in the enamine catalysis of
aldolase enzymes.15
In summary, we present that small peptides with a catalytic
primary amino acid residue at the N-terminus catalyze the
asymmetric intermolecular aldol reaction between unmodified
ketones and aldehydes with high stereoselectivity in water. For
example, simple di- and tripeptides catalyzed the asymmetric
assembly of the corresponding b-hydroxy ketones in up to 86%
ee in water and 99% ee in aqueous media. The high modularity of
the small peptides should enable the construction of several novel
catalysts by combinatorial techniques for the aqueous asymmetric
aldol reaction. The remarkably high difference in stereoselectivity
between the peptide and amino acid-catalyzed aqueous aldol reac-
tions suggest that peptide bond-formation was an important step
towards the evolution of asymmetric catalysis and homochirality.
Moreover, the small peptide-catalyzed aqueous aldol reaction
may be of biological significance.16,17 Further development of
environmentally benign asymmetric C–C bond-forming reactions,
mechanistic studies and DFT calculations are ongoing.
7 P. G. Schultz and R. A. Lerner, Nature, 2002, 418, 485.
8 For reviews, see: P. I. Dalko and L. Moisan, Angew. Chem., Int. Ed.,
2004, 43, 5138; B. List, Tetrahedron, 2002, 58, 5573. For reviews on the
use of peptides in asymmetric organic reactions, see: S. J. Miler, Acc.
Chem. Res., 2004, 37, 601; A. Berkessel, Curr. Opin. Chem. Biol., 2003,
7, 409.
9 (a) Z. G. Hajos and D. R. Parrish, J. Org. Chem., 1974, 39, 1615;
(b) U. Eder, R. Sauer and R. Wiechert, Angew. Chem., Int. Ed., 1971,
10, 496; (c) B. List, R. A. Lerner and C. F. Barbas, III, J. Am. Chem.
Soc., 2000, 122, 2395; (d) W. Notz and B. List, J. Am. Chem. Soc.,
2000, 122, 7386; (e) K. S. Sakthivel, W. Notz, T. Bui and C. F. Barbas,
III, J. Am. Chem. Soc., 2001, 123, 5260; (f) B. List, P. Porjarliev and
C. Castello, Org. Lett., 2001, 3, 573; (g) A. Co´rdova, W. Notz and
C. F. Barbas, III, J. Org. Chem., 2002, 67, 301; (h) A. B. Northrup
and D. W. C. MacMillan, J. Am. Chem. Soc., 2002, 124, 6798; (i) A.
Bøgevig, N. Kumaragurubaran and K. A. Jørgensen, Chem. Commun.,
2002, 620; (j) Z. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong,
A.-Q. Mi, Y.-Z. Jiang and Y.-D. Wu, J. Am. Chem. Soc., 2003, 125,
5262; (k) J. Casas, H. Sunde´n and A. Co´rdova, Tetrahedron Lett.,
2004, 45, 7697; (l) Torii, M. Nakadai, K. Ishihara, S. Saito and H.
Yamamoto, Angew. Chem., Int. Ed., 2004, 43, 1983; (m) A. Hartikaa
and P. I. Arvidsson, Tetrahedron: Asymmetry, 2004, 15, 1831; (n) A.
Berkessel, B. Koch and J. Lex, Adv. Synth. Catal., 2004, 346, 1141;
(o) A. J. A. Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold and
S. V. Ley, Org. Biomol. Chem., 2005, 3, 84; (p) J. Casas, M. Engqvist,
I. Ibrahem, B. Kaynak and A. Co´rdova, Angew. Chem., Int. Ed., 2005,
44, 1343; (q) D. Enders and C. Grondal, Angew. Chem., Int. Ed., 2005,
44, 1210; (r) I. Ibrahem and A. Co´rdova, Tetrahedron Lett., 2005, 46,
3363; (s) A. I. Nyberg, A. Usano and P. Pihko, SYNLETT, 2004,
1891; (t) D. E. Ward and V. Jheengut, Tetrahedron Lett., 2004, 45,
8347. For examples of N-terminal prolyl peptide-catalyzed asymmetric
aldol reactions, see: (u) J. Kofoed, J. Nielsen and J.-L. Reymend,
Bioorg. Med. Chem. Lett., 2003, 13, 2445; (v) H. J. Martin and B.
List, SYNLETT, 2003, 1901; (w) Z. Tang, Z.-H. Yang, L.-F. Cun,
L.-Z. Gong, A.-Q. Mi and Y.-Z. Jiang, Org. Lett., 2004, 6, 2285; (x) P.
Krattiger, R. Kovasy, J. D. Revell, S. Ivan and H. Wennemers, Org. Lett.,
2005, 7, 119.
10 J. L. Reymond and Y. Chen, J. Org. Chem., 1995, 60, 6970; T. J.
Dickerson and K. D. Janda, J. Am. Chem. Soc., 2000, 122, 7386; A.
Co´rdova, W. Notz and C. F. Barbas, III, Chem. Commun., 2002, 3024;
S. S. Chimni, D. Mahajan and V. V. S. Babu, Tetrahedron Lett., 2005,
46, 5617; Y.-Y. Peng, Q.-P. Ding, Z. Li, P. G. Wang and J.-P. Cheng,
Tetrahedron Lett., 2003, 44, 3871. For examples of aqueous aldol
reactions promoted by amino acid Zn complexes, see: M. Nakagawa,
H. Nakao and K.-I. Watanabe, Chem. Lett., 1985, 391; T. Darbre
and M. Machuqueiro, Chem. Commun., 2003, 1090; J. Kofoed, M.
Machuqueiro, J.-L. Reymond and T. Darbre, Chem. Commun., 2004,
1540.
We gratefully acknowledge the Swedish National Research
Council, Carl-Trygger, Lars-Hierta and Wenner-Gren Founda-
tions for financial support.
References
1 (a) W.-D. Fessner, in Stereoselective Biocatalysis, ed. R. N. Patel, Marcel
Dekker, New York, 2000, p. 239; (b) T. D. Machajewski and H. Wong,
C.-H., Angew. Chem., Int. Ed., 2000, 39, 1352.
2 (a) Comprehensive Organic Synthesis, vol 2., ed. B. M. Trost, I. Fleming
and C.-H. Heathcock, Pergamon, Oxford, 1991; (b) T. Mukaiyama,
Angew. Chem., Int. Ed., 2004, 43, 5590.
11 S. Pizzarello and A. Weber, Science, 2004, 303, 1151; A. Co´rdova, M.
Engqvist, I. Ibrahem, J. Casas and H. Sunde´n, Chem. Commun., 2005,
2047; A. Co´rdova, I. Ibrahem, J. Casas, H. Sunde´n, M. Engqvist and
E. Reyes, Chem. Eur. J., 2005, 11, 4772.
12 (a) A. Co´rdova, W. Zou, I. Ibrahem, E. Reyes, M. Engqvist and
W. - W. L i a o , Chem. Commun., 2005, 3586; (b) W. You, I. Ibrahem,
P. Dziedzic, H. Sunde´n and A. Co´rdova, Chem. Commun., 2005,
DOI: 10.1039/b509902j.
13 R. Breslow, Chem. Rev., 1998, 98, 1997; D. Q. Yuan, S. D. Dong and R.
Breslow, Tetrahedron Lett., 1998, 39, 7673; R. Breslow and A. Graff,
J. Am. Chem. Soc., 1993, 115, 10988.
14 A. Bassan, W. Zou, E. Reyes, F. Himo and A. Co´rdova, Angew. Chem.,
Int. Ed., 2005, 44, 7028.
15 A. Heine, G. Desantis, J. G. Luz, M. Mitchell and C.-H. Wong, Science,
2001, 294, 369.
16 We found that small peptides isolated from the cytosol of human
melanoma cells catalyzed the formation of 2a in 54% yield with 75% ee.
In addition, bovine serum albumin mediated the asymmetric formation
of 2a with 9% ee in water.
3 Modern Aldol Reactions, vol. 1 & 2, ed. R. Mahrwald, Wiley-
VCH, Weinheim, 2004; E. M. Carreira, in Comprehensive Asymmetric
Catalysis, ed. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer,
Heidelberg, 1999; J. S. Johnson and D. A. Evans, Acc. Chem. Res.,
2000, 33, 325; C. Palomo, M. Oiarbide and J. M. Garc´ıa, Chem. Soc.
Rev., 2004, 33, 65. For examples of direct catalytic asymmetric aldol
reactions see: K. Juhl, N. Gathergood and K. A. Jørgensen, Chem.
Commun., 2000, 2211; B. M. Trost, H. Ito and E. R. Silcoff, J. Am.
Chem. Soc., 2001, 123, 3367; Y. M. A. Yamada, N. Yoshikawa, H.
Sasai and M. Shibasaki, Angew. Chem., Int. Ed., 1997, 36, 1871; N.
Yoshikawa, Y. M. A. Yamada, J. Das, H. Sasai and M. Shibasaki,
J. Am. Chem. Soc., 1999, 121, 4168; D. A. Evans, C. W. Downey and
J. L. Hubbs, J. Am. Chem. Soc., 2003, 125, 8706.
4 For a reviews on asymmetric organic reactions in water, see: U. M.
Linstro¨m, Chem. Rev., 2002, 102, 2751; S. Kobayashi and K. Manabe,
Chem. Eur. J., 2002, 8, 4094.
5 S. Kobayashi and K. Manabe, Acc. Chem. Res., 2002, 35, 209; Y. Mori,
K. Manabe and S. Kobayashi, Angew. Chem., Int. Ed., 2001, 40, 2815;
C.-J. Li and T.-H. Chan, Tetrahedron, 1999, 55, 11149; A. Graven, M.
Groti and M. Meldal, J. Chem. Soc., Perkin Trans. 1, 2000, 955.
6 R. Schoevaart, F. Van Rantwijk and R. A. Sheldon, R. A., J. Org.
Chem., 2000, 65, 6940; H. J. M. Gijsen, L. Qiao, W. Fitz and C.-H
Wong, Chem. Rev., 1996, 96, 443.
17 Small peptides (<40 amino acids) catalyze aldol reactions and related
reactions in buffer. However, the reactions were not enantioselective:
H. D. Dakin, J. Biol. Chem., 1910, 7, 49; K. Johnsson, R. K. Allemann,
H. Widmer and S. A. Benner, Nature, 1993, 365, 530; C. J. Weston,
C. H. Cureton, M. J. Calvert, O. S. Smart and R. K. Allemann,
ChemBioChem, 2004, 5, 1075; F. Tanaka, R. Fuller and C. F. Barbas,
III, Biochemistry, 2005, 44, 7583.
4 0 | Org. Biomol. Chem., 2006, 4, 38–40
This journal is
The Royal Society of Chemistry 2006
©