Nickel and Zinc Dibenzoylmethanates
Inorganic Chemistry, Vol. 40, No. 7, 2001 1631
upon formation of these six bonds compared to four bonds in
the brown form must favor the cluster formation.
and Ni734 and cyclic Ni12 clusters35 were recently prepared, with
the Ni-Ni distance varying between 2.3 and 3.1 Å. Linear Ni3
trimers have been found for nickel complexes with acetylac-
etonate,36 its 3-substituted derivatives,37 and some other ligands,38
the Ni-Ni distance varying between 2.4 and 3.1 Å. The
trimerization may be explained as a means of achieving
octahedral coordination, as the trimer is the smallest polymeric
unit in which octahedral coordination of all the nickel atoms
can be accomplished provided there is no intermolecular sharing
of oxygen atoms. Bulky substituents were shown to suppress
trimerization of nickel acetylacetonate derivatives due to steric
hindrance.39,40 Moreover, when passing from the molecular level
to 3D packing, the trimer molecule yields to simpler units to
satisfy packing requirements. This is probably the main reason
only a few trimeric nickel complexes of this type have been
found so far in the solid state.
More than 300 structures with direct chemical Ni-Ni
interactions have been reported. These comprise Ni2 clusters,22
Ni3 bent clusters,23 and triangular,24 square,25 pentagonal,26
hexagonal,27 tetrahedral,28 octahedral,29 cubic,30 and pentagonal
prismatic or antiprismatic clusters,31 with the Ni-Ni distance
varying from 2.3 to 3.3 Å. In organometallic compounds
incorporating Ni(0) clusters the length for the Ni-Ni single bond
is typically between 2.3 and 2.6 Å. In Ni(II) complexes the
nickel clusters are surrounded by polydentate-bridging ligands;
the Ni-Ni distance varies continuously up to the sum of the
atomic van der Waals radii,17 3.3 Å, at which point the chemical
interaction may be considered to be insignificant. Using special
polydentate ligands, complexes comprising linear Ni4,32 Ni5,33,34
There are three types of DBM units in the trimer molecule
(Figure 4a). The first (O1, O3, etc.) and second (O4, O6, etc.)
chelate to the terminal nickels with Ni-O distances of 1.95-
2.02 Å, while the second also bridges one donor oxygen (O6)
to the central nickel (Ni2) at 2.11 Å. As these ligands coordinate
in the cis mode, the chelate rings surrounding the nickel atom
are not coplanar and cannot interact. The third type (O7, O9,
etc.) coordinates to all three nickel atoms, chelating the central
one at 1.97-1.99 Å and bridging the terminal atoms at 2.16
(Ni1A-O7) and 2.25 (Ni1-O9) Å. These ligands chelate to
the central atom in the trans mode, so that their chelate rings
are coplanar and may interact. Qualitatively the trimeric
molecule is quite similar to trimeric nickel acetylacetonate,36
except that in that molecule the Ni-Ni distance is longer, 2.86-
2.88 Å. But, as compared with the [Ni3(acac)6] trimer, the [Ni3-
(DBM)6] molecule has greater conformational freedom; the
phenyl rings rotate from the corresponding chelate rings (which
are planar within 0.1-0.2 Å) by 29.7° (C11···), 37.5° (C31···),
28.2° (C41···), 24.1° (C61···), 30.7° (C71···), and 21.5° (C91···).
This 22-38° range in the angles indicates the molecule’s ability
to respond to crystal packing requirements.
(22) (a) Byers, L. R.; Dahl, L. F. Inorg. Chem. 1980, 19, 680-689. (b)
Jones, R. A.; Stuart, A. L.; Atwood, J. L.; Hunter, W. E.; Rogers, R.
D. Organometallics 1982, 1, 1721-1723. (c) Beck, J.; Strahle, J.
Angew. Chem., Int. Ed. Engl. 1985, 24, 409-410. (d) Ho, N. F.; Mak,
T. C. W.; Luh, T. Y. J. Chem. Soc., Dalton Trans. 1990, 3591-3595.
(e) Walther, D.; Klettke, T.; Imhof, W.; Gorls, H. Z. Anorg. Allg.
Chem. 1996, 622, 1134-1144. (f) Shaposhnikova, A. D.; Teplova,
M. V.; Kamalov, G. L.; Pasynskii, A. A.; Eremenko, I. L.; Struchkov,
Yu. T.; Yanovskii, A. I. Russ. J. Inorg. Chem. 1997, 42, 1824-1827
(pp 1986-1989 in Russian version). (g) Fenske, D.; Maczek, B.;
Maczek, K. Z. Anorg. Allg. Chem. 1997, 623, 1113-1120. (h) Scherer,
O. J.; Vondung, C.; Wolmershauser, G. Angew. Chem., Int. Ed. Engl.
1997, 36, 1303-1305. (i) Jones, W. D.; Vicic, D. A. J. Am. Chem.
Soc. 1997, 119, 10855-10856.
(23) (a) Bennett, M. A.; Griffiths, K. D.; Okano, T.; Parthasarathi, V.;
Robertson, G. B. J. Am. Chem. Soc. 1990, 112, 7047-7048. (b)
Walther, D.; Klettke, T.; Gorls, H. Angew. Chem., Int. Ed. Engl. 1995,
34, 1860-1861. (c) Klettke, T.; Walther, D.; Schmidt, A.; Gorls, H.;
Imhof, W.; Gunther, W. Chem. Ber. 1996, 129, 1457-1461. (d)
Brechin, E. K.; Harris, S. G.; Parsons, S.; Winpenny, R. E. P. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1967-1969.
(24) (a) Whoolery, A. J.; Dahl, L. F. J. Am. Chem. Soc. 1991, 113, 6683-
6685. (b) North, T. E.; Thoden, J. B.; Spencer, B.; Bjarnason, A.;
Dahl, L. F. Organometallics 1992, 11, 4326-4337. (c) Berkessel, A.;
Bats, J. W.; Huber, M.; Haase, W.; Neumann, T.; Seidel, L. Chem.
Ber. 1995, 128, 125-129. (d) Klein, H.-F.; Dal, A.; Hartmann, S.;
Florke, U.; Haupt, H.-J. Inorg. Chim. Acta 1999, 289, 199-203.
(25) (a) Tremel, W.; Krebs, B.; Henkel, G. Chem. Commun. 1986, 1527-
1529. (b) Bell, M.; Edwards, A. J.; Hoskins, B. F.; Kachab, E. H.;
Robson, R. Chem. Commun. 1987, 1852-1854. (c) Karet, G. B.; Espe,
R. L.; Stern, C. L.; Shriver, D. F. Inorg. Chem. 1992, 31, 2658-
2660.
(26) Muller, A.; Henkel, G. Chem. Commun. 1996, 1005-1006.
(27) (a) Capdevila, M.; Gonzalez-Duarte, P.; Sola, J.; Foces-Foces, C.;
Hernandez, C.; Martinez-Ripoll, M. Polyhedron 1989, 8, 1253-1259.
(b) Wark, T. A.; Stephan, D. W. Organometallics 1989, 8, 2836-
2843. (c) Schulbert, K.; Mattes, R. Z. Naturforsch. 1994, 49b, 770-
772.
(28) (a) Simonov, Yu. A.; Dvorkin, A. A.; Matuzenko, G. S.; Yampol’skaya,
M. A.; Gifeisman, T. Sh.; Gerbeleu, N. V.; Malinovskii, T. I. Koord.
Khim. 1984, 10, 1247-1252; Chem. Abstr. 1984, 101, 238414s. (b)
Bochmann, M.; Hawkins, I.; Yellowlees, L. J.; Hursthouse, M. B.;
Short, R. L. Polyhedron 1989, 8, 1351-1355. (c) Schneider, J. J.;
Goddard, R.; Kruger, C.; Werner, S.; Metz, B. Chem. Ber. 1991, 124,
301-308. (d) Jutzi, P.; Neumann, B.; Reumann, G.; Stammler, H.-G.
Organometallics 1998, 17, 1305-1314.
(29) (a) Williams, I. H.; Spangler, D.; Femec, D. A.; Maggiora, G. M.;
Schowen, R. L. J. Am. Chem. Soc. 1980, 102, 6621-6623. (b) Eguchi,
T.; Harding, R. A.; Heaton, B. T.; Londoni, G.; Miyagi, K.; Nahring,
J.; Nakamura, N.; Nakayama, H.; Smith, A. K. J. Chem. Soc., Dalton
Trans. 1997, 479-483.
(30) (a) Fenske, D.; Magull, J. Z. Naturforsch. 1990, 45b, 121-126. (b)
Zebrowski, J. P.; Hayashi, R. K.; Bjarnason, A.; Dahl, L. F. J. Am.
Chem. Soc. 1992, 114, 3121-3123.
It should be noted that the green form is thermodynamically
stable above 202 °C and the structure was studied at -100 °C.
Although there should be no significant changes in molecular
structure or packing mode, the metastable phase is more than
300° away from the conditions of its stability. Crystal packing
of the trimers in the structure is shown in Figure 5a. The van
(33) Shieh, S. J.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Angew.
Chem., Int. Ed. Engl. 1997, 36, 56-59.
(34) Wang, C. C.; Lo, W. C.; Chou, C. C.; Lee, G. H.; Chen, J. M.; Peng,
S. M. Inorg. Chem. 1998, 37, 4059-4065.
(35) Blake, A. J.; Grant, C. M.; Parsons, S.; Rawson, J. M.; Winpenny, R.
E. P. Chem. Commun. 1994, 2363-2364.
(36) (a) Bullen, G. J.; Mason, R.; Pauling, P. Nature 1961, 189, 291-292.
(b) Bullen, G. J.; Mason, R.; Pauling, P. Inorg. Chem. 1965, 4, 456-
462. (c) Hursthouse, M. B.; Laffey, M. A.; Moore, P. T.; New, D. B.;
Raithby, P. R.; Thornton, P. J. Chem. Soc., Dalton Trans. 1982, 307-
312.
(37) Dohring, A.; Goddard, R.; Jolly, P. W.; Kruger, C.; Polyakov, V. R.
Inorg. Chem. 1997, 36, 177-183.
(38) (a) Aduldecha, S.; Hathaway, B. J. Chem. Soc., Dalton Trans. 1991,
993-998. (b) Colombo-Kather, D.; Caminade, A. M.; Kraemer, R.;
Raynaud, B.; Jaud, J.; Majoral, J. P. Bull. Soc. Chim. Fr. 1994, 131,
733-741. (c) Blake, A. J.; Brechin, E. K.; Codron, A.; Gould, R. O.;
Grant, C. M.; Parsons, S.; Rawson, J. M.; Winpenny, R. E. P. Chem.
Commun. 1995, 1983-1985. (d) Elmali, A.; Elerman, Y.; Svoboda,
I.; Fuess, H.; Griesar, K.; Haase, W. Z. Naturforsch. 1996, 51b, 665-
670. (e) Ulku, D.; Ercan, F.; Atakol, O.; Dincer, F. N. Acta Crystallogr.
1997, C53, 1056-1057.
(31) (a) DesEnfants, R. E., II.; Gavney, J. A., Jr.; Hayashi, R. K.; Rae, A.
D.; Dahl, L. F.; Bjarnason, A. J. Organomet. Chem. 1990, 383, 543-
572. (b) Rieck, D. F.; Gavney, J. A., Jr.; Norman, R. L.; Hayashi, R.
K.; Dahl, L. F. J. Am. Chem. Soc. 1992, 114, 10369-10379. (c)
Mlynek, P. D.; Dahl, L. F. Organometallics 1997, 16, 1641-1654,
1655-1667.
(39) Cotton, F. A.; Fackler, J. P., Jr. J. Am. Chem. Soc. 1961, 83, 2818-
2825.
(32) Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang,
M.; Leung, M.; Peng, S. M. J. Am. Chem. Soc. 1999, 121, 250-251.
(40) Fackler, J. P., Jr.; Cotton, F. A. J. Am. Chem. Soc. 1961, 83, 3775-
3778.