ORGANIC
LETTERS
2003
Vol. 5, No. 23
4405-4408
A Practical Improvement, Enhancing the
Large-Scale Synthesis of
(+)-Discodermolide: A Third-Generation
Approach
Amos B. Smith III,* B. Scott Freeze, Ignacio Brouard, and Tomoyasu Hirose
Department of Chemistry, UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104
Received September 4, 2003
ABSTRACT
A significant improvement to the Penn one-gram synthesis of (+)-discodermolide (1) has been achieved. Specifically, reduction of the steric
bulk of the C(11) hydroxyl protecting group permits formation of the requisite AB Wittig salt at the expense of the undesired intramolecular
cyclization upon treatment with PPh3 at ambient pressure.
(+)-Discodermolide (1, Figure 1), an architecturally intrigu-
ing marine sponge natural product1 possessing significant
antitumor activity,2 is currently undergoing clinical trials.3
The mechanism of action, similar to that of the epothilones
(2), the eleutherobins, and the clinically proven anticancer
drug Taxol (3), entails stabilization of mitotic spindle
microtubules.2 Importantly, (+)-discodermolide (1) is effec-
tive against Taxol-resistant cell lines.4 In addition, (+)-
discodermolide (1) displays the unusual property of synergy
with Taxol.5 Not surprisingly, the promise of therapeutic use,
in conjunction with the interesting architecture of (+)-1, has
led to a number of total syntheses,6 including our develop-
ment of a preparative-scale approach, which in 1999
culminated in the synthesis of over 1 g of the natural
product.6d The latter was sufficient to permit extensive
preclinical pharmacological studies leading to Phase 1 clinical
trials by the Novartis Pharmaceutical Corp.
The continued need for an even more efficient, practical
synthesis of (+)-discodermolide, however, has prompted us
to reinvestigate what we saw as a significant limiting step
in the ultimate scalability of our gram-scale approach, namely
the requirement to employ ultrahigh-pressure conditions (ca.
(6) (a) Nerenberg, J. B.; Hung, D. T.; Somers, P. K.; Schreiber, S. L. J.
Am. Chem. Soc. 1993, 115, 12621. (b) Hung, D. T.; Nerenberg, J. B.;
Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 11054. (c) Smith, A. B., III;
Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, 117, 12011.
(d) Smith, A. B., III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.;
Arimoto, H. Org. Lett. 1999, 1, 1823. (e) Smith, A. B., III; Beauchamp, T.
J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. A.;
Kobayashi, K. J. Am. Chem. Soc., 2000, 122, 8654. (f) Harried, S. S.; Yang,
G.; Strawn, M. A.; Myles, D. C. J. Org. Chem. 1997, 62, 6098. (g) Marshall,
J. A.; Lu, Z.-H.; Johns, B. A. J. Org. Chem. 1998, 63, 7885. (h) Paterson,
I.; Florence, G. J.; Gerlach, K.; Scott, J. P. Angew. Chem., Int. Ed. 2000,
39, 377. (i) Harried, S. S.; Lee, C. P.; Yang, G.; Lee, T. I. H.; Myles, D.
C. J. Org. Chem. 2003, 68, 6646. (j) Halstead, D. P. Ph.D. Thesis, Harvard
University, Cambridge, 1998.
(1) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K.
J. Org. Chem. 1990, 55, 4912. Correction: J. Org. Chem. 1991, 56, 1346.
(2) (a) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R.
E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996,
35, 243. (b) Hung, D. T.; Chen, J.; Schreiber, S. L. Chem. Biol. 1996, 3,
287.
(3) Novartis Pharmaceuticals.
(4) Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley, R.
E.; Day, B. W.; Hamel, E. Mol. Pharm. 1997, 52, 613.
(5) Martello, L. A.; McDaid, H. M.; Regl, D. L.; Yang, C. H.; Meng,
D.; Pettus, T. R.; Kaufman, M. D.; Arimoto, H.; Danishefsky, S. J.; Smith,
A. B., III; Horwitz, S. B. Clin. Cancer Res. 2000, 6, 1978.
10.1021/ol035697i CCC: $25.00 © 2003 American Chemical Society
Published on Web 10/16/2003