113, 87–107; (d ) E. N. Jacobsen and M. H. Wu, in Comprehensive
Experimental
Asymmetric Catalysis, eds. E. N. Jacobsen, A. Pfaltz and
H. Yamamoto, Springer-Verlag, Berlin, 1999, pp. 649–675;
(e) T. Katsuki, in Catalytic Asymmetric Synthesis, ed. I. Ojima,
Wiley-VCH, Weinheim, 2000, pp. 287–325.
Instrumental methods
UV–Visible spectra were recorded on a Hewlett Packard model
HP8453 diode array spectrophotometer and analysed using a
PC running Hewlett Packard A.02.05 UV–Vis ChemStation
software.
2 (a) J. P. Collman, X. Zhang, V. J. Lee, E. S. Uffelman and
J. I. Brauman, Science, 1993, 261, 1404–1410; (b) Y. Naruta, in
Metalloporphyrins in Catalytic Oxidations, ed. R. A. Sheldon,
Marcel Dekker, New York, 1994, pp. 241–259; (c) L. A. Campbell
and T. Kodadek, J. Mol. Catal. A: Chem., 1996, 113, 293–310.
3 J. T. Groves and R. S. Myers, J. Am. Chem. Soc., 1983, 105, 5791–
5796.
Isothermal and temperature-programmed gas chromato-
graphy was carried out on an AMS94 gas chromatograph with
a flame ionisation detector and helium as the mobile phase. The
data were analysed on a PC with Jones Chromatography
JCL6000 (revision 005) analytical software. The non-chiral
analyses used an Alltech Carbowax capillary column (30 m, i.d.
0.25 mm, film thickness 0.25 µm) and the chiral separations
employed a Chiraldex γ-cyclodextrin propionyl capillary col-
umn (50 m, i.d. 0.25 mm) or a Supelco β-DEX 120 capillary
column (30 m, i.d. 0.25 mm, film thickness 0.25 µm). The
methods were optimised and calibrated using racemic epoxides.
The (R) and (S) styrene epoxides were identified by comparison
of retention times of authentic samples. The product yields
were quantified using 1,3-dichlorobenzene as the internal
standard. The identities of all the oxidation products were con-
firmed by GC-MS using a VG Autospec S Series A027 mass
spectrometer linked to a Hewlettt Packard 5890 Series 2 gas
chromatograph. The spectra were analysed using a VAX3100
Workstation.
4 (a) D. Mansuy, P. Battioni, J.-P. Renaud and P. Guerin,
Chem. Commun., 1985, 155–156; (b) J. T. Groves and P. Viski, J. Org.
Chem., 1990, 55, 3628–3633; (c) K. Konishi, K.-I. Oda, K. Nishida,
T. Aida and S. Inoue, J. Am. Chem. Soc., 1992, 114, 1313–1317;
(d ) J. P. Collman, X. Zhang, V. J. Lee and J. I. Brauman, Chem.
Commun., 1992, 1647–1649; (e) Y. Naruta, N. Ishihara, F. Tani
and K. Maruyama, Bull. Chem. Soc. Jpn., 1993, 66, 158–166;
( f ) J. P. Collman, V. J. Lee, C. J. Kellen-Yuen, X. Zhang,
J. A. Ibers and J. I. Brauman, J. Am. Chem. Soc., 1995, 117, 692–703;
(g) S. Vilain-Deshayes, P. Maillard and M. Momenteau, J. Mol.
Catal. A: Chem., 1996, 113, 201–207; (h) S. Ini, M. Kapon, S. Cohen
and Z. Gross, Tetrahedron Asymmetry, 1996, 7, 659–662; (i) Z. Gross
and S. Ini, J. Org. Chem., 1997, 62, 5514–5521; (j) J. F. Barry,
L. Campbell, D. W. Smith and T. Kodadek, Tetrahedron, 1997,
53, 7753–7776; (k) R. L. Halterman, S.-T. Jan, H. L. Nimmons,
D. J. Standlee and M. A. Khan, Tetrahedron, 1997, 53, 11257–11276;
(l ) R. L. Halterman, S.-T. Jan, A. H. Abdulwali and D. J. Standlee,
Tetrahedron, 1997, 53, 11277–11296; (m) T.-S. Lai, R. Zhang,
K.-K. Cheung, H.-L. Kwong and C.-M. Che, Chem. Commun.,
1998, 1583–1584; (n) J. P. Collman, Z. Wang, A. Straumanis,
M. Quelquejeu and E. Rose, J. Am. Chem. Soc., 1999, 121, 460–461;
(o) C. Perollier, J. Pecaut, R. Ramasseul and J.-C. Marchon,
Inorg. Chem., 1999, 38, 3758–3759; (p) G. Reginato, L. Di Bari,
P. Salvadori and R. Guilard, Eur. J. Org. Chem., 2000, 1165–1171;
(q) B. Boitrel, V. Baveux-Chambenoit and P. Richard, Eur. J. Inorg.
Chem., 2002, 1666–1672.
The molecular models for the metalloporphyrins 1–5 were
generated using the program Cerius2 (BIOSYM/Molecular
Simulations) and minimised using the Universal force field.17
Materials
All reagents and solvents were used as purchased (Aldrich,
Lancaster) unless otherwise stated. Iodosylbenzene was pre-
pared from iodobenzene diacetate as described previously.14c
The syntheses of the metalloporphyrin catalysts have been
reported.6 The alkenes were purified by passing them through
a short column of activated alumina prior to use and their
purities were checked by GC analysis.
5 E. Rose, M. Soleilhavoup, L. Christ-Tommasino, G. Moreau,
J. P. Collman, M. Quelquejeu and A. Straumanis, J. Org. Chem.,
1998, 63, 2042–2044.
6 S. P. Foxon, J. R. Lindsay Smith, P. O’Brien and G. Reginato,
J. Chem. Soc., Perkin Trans. 2, 2001, 1145–1153.
7 B. Meunier, Chem. Rev., 1992, 92, 1411–1456.
8 (a) C. K. Chang and F. Ebina, J. Chem. Soc., Chem. Commun., 1981,
778–779; (b) P. S. Traylor, D. Dolphin and T. G. Traylor, J. Chem.
Soc., Chem. Commun., 1984, 279–280; (c) M. J. Nappa and
C. A. Tolman, Inorg. Chem., 1985, 24, 4711–4719; (d ) S. Banfi,
F. Montanari and S. Quici, J. Org. Chem., 1989, 54, 1850–1859;
(e) D. Dolphin, T. G. Traylor and L. Y. Xie, Acc. Chem. Res., 1997,
30, 251–259; ( f ) J.-F. Bartoli, V. Mouries-Mansuy, K. Le Barch-
Ozette, M. Palacio, P. Battioni and D. Mansuy, Chem. Commun.,
2000, 827–828.
Oxidation systems
The achiral epoxidations were carried out at room temperature
by adding iodosylbenzene (22 mg, 0.1 mol) to a solution of the
substrate (1 mmol), metalloporphyrin (1 × 10Ϫ6 mol) and 1,3-
dichlorobenzene (0.01 cm3, GC internal standard) in dry di-
chloromethane (3.1 cm3). For chiral epoxidations the quantities
employed were a fifth of those above. The product distributions
and yields were monitored by removing aliquots from the
alkene oxidations, with a syringe at selected time intervals, and
analysing them by GC. The final yields of epoxide, based on
iodosylbenzene, were calculated after 70–90 min.
The catalyst stabilities during the epoxidations were deter-
mined by diluting aliquots (50 µl) from the reaction mixtures
with dichloromethane (3 cm3) and analysing them by UV–Vis
spectroscopy by monitoring the metalloporphyrin Soret band.
The yield of iodoxybenzene was determined by adding
glacial acetic acid (30 cm3), excess of potassium iodide (10%
aqueous solution) and ice to the reaction mixture dissolved in
methanol (20 cm3). After 30 min in the dark with occasional
shaking, the solution was titrated against sodium thiosulfate
solution using starch as indicator.18
9 P. E. Ellis and J. E. Lyons, Coord. Chem. Rev., 1990, 105,
181–193.
10 J. R. Lindsay Smith and P. R. Sleath, J. Chem. Soc., Perkin Trans. 2,
1982, 1009–1015.
11 T. Mashiko, D. Dolphin, T. Nakano and T. G. Traylor, J. Am. Chem.
Soc., 1985, 107, 3735–3736; D. Mansuy, L. Devocelle, I. Artaud
and P. Battioni, Nouv. J. Chim., 1985, 7, 711–716; J. P. Collman,
P. D. Hampton and J. I. Brauman, J. Am. Chem. Soc., 1990, 112,
2977–2986; J. P. Collman, P. D. Hampton and J. I. Brauman, J. Am.
Chem. Soc., 1990, 112, 2986–2998.
12 A. El-Kasmi, D. Lexa, P. Maillard, M. Momenteau and
J.-M. Savéant, J. Am. Chem. Soc., 1991, 113, 1586–1595.
13 (a) R. Zhang, W.-Y. Yu, T.-S. Lai and C.-M. Che,
Chem. Commun., 1999, 409–410; (b) R. Zhang, W.-Y. Yu, H.-Z. Sun,
W.-S. Liu and C.-M. Che, Chem. Eur. J., 2002, 8, 2495–2507.
14 (a) B. C. Schardt and C. L. Hill, Inorg. Chem., 1983, 22, 1563–1565;
(b) D. R. Leanord and J. R. Lindsay Smith, J. Chem. Soc.,
Perkin Trans. 2, 1991, 25–30; (c) P. R. Cooke and J. R. Lindsay
Smith, J. Chem. Soc., Perkin Trans. 2, 1994, 1913–1923.
15 P. Inchley and J. R. Lindsay Smith, J. Chem. Soc., Perkin Trans. 2,
1995, 1579–1587.
16 G. Reginato, unpublished results.
References
1 (a) E. N. Jacobsen, in Catalytic Asymmetric Synthesis, ed. I. Ojima,
VCH, New York, 1993, pp. 159–202; (b) T. Katsuki, Coord. Rev.,
1995, 140, 189–214; (c) T. Katsuki, J. Mol. Catal. A: Chem., 1996,
17 A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and
W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024–10035.
18 G. Gray and J. R. Lindsay Smith, unpublished method.
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 2 5 4 3 – 2 5 4 9
2549