LETTER
Synthesis of a-D-Mannosylphosphate Serine Derivatives
1375
bal glycosylphosphorylation of pre-assembled peptides.
Alternatively, building blocks such as 10 should be useful
for the stepwise synthesis of glycosylphosphopeptides.
Acknowledgement
We thank the Egyptian Cultural and Educational Bureau and the Of-
fice of the Vice President for Research, The University of Georgia,
Athens for financial support.
Preparation compound 3a. To a stirred solution of 1 (0.55 g, 1.43
mmol) and DIPEA (0.52 mL, 2.86 mmol) in CH2Cl2 (5 mL) was
added benzyl N,N-diisopropylchlorophosphoramidite 2a (0.3 g, 1.4
mmol). When TLC analysis (ethyl acetate/hexane 2/1) showed
completion of the reaction, the reaction mixture was diluted with
CH2Cl2 (20 mL) and successively washed with ice-cold 10% aque-
ous NaHCO3 (10 mL), brine (10 mL) and water (15 mL), followed
by drying over MgSO4. After evaporation of the solvent, compound
3a was obtained as a colorless oil (0.5g, 59%). 31P NMR d: 14.9,
References
(1) Lis, H.; Sharon, N. Eur. J. Biochem. 1993, 218, 1.
(2) Arsequell, G.; Valencia, G. Tetrahedron: Asymmetry 1997,
8, 2839.
(3) Varki, A. Glycobiology 1993, 3, 97.
(4) Dwek, R. A. Biochem. Soc. Trans. 1995, 23, 1.
(5) Dwek, R. A. Chem. Rev. 1996, 96, 683.
(6) Hayes, B. K.; Hart, G. W. Curr. Opin. Struct. Biol. 1994, 4,
692.
1
15.2 (2 × s, 2 diastereoisomers). H NMR (300 MHz, CDCl3): d:
7.22–7.16 (m, 5 H, Ar-H), 5.84 (dd, 1 H, H-1, J1,2 = 1.6 Hz, J1,P
=
8.0 Hz), 5.61 (s, 2 H, OCH2Ph), 5.38 (dd, 1 H, H-3, J2,3 = 3.6 Hz,
3,4 = 9.5 Hz). 5.11 (t, 1 H, H-4, J4,5 = 10 Hz), 5.09 (dd, 1 H, H-2),
(7) Haynes, P. A. Glycobiology 1998, 8, 1.
(8) Souza, G. M.; Hirai, J.; Mehta, D. P.; Freeze, H. H. J. Biol.
Chem. 1995, 270, 28938.
(9) Ord, T.; Adessi, C.; Wang, L.; Freeze, H. H. Glycobiology
1996, 6, 313.
(10) Ilg, T.; Overath, P.; Ferguson, M. A. J.; Rutherford, T.;
Campbell, D. G.; McConville, M. J. J. Biol. Chem. 1994,
269, 24073.
(11) McConville, M. J.; Thomasoates, J. E.; Ferguson, M. A. J.;
Homans, S. W. J. Biol. Chem. 1990, 265, 19611.
(12) Ilg, T.; Stierhof, Y. D.; Craik, D.; Simpson, R.; Handman,
E.; Bacic, A. J. Biol. Chem. 1996, 271, 21583.
(13) Westerduin, P.; Veeneman, G. H.; Marugg, J. E.; Van der
Marel, G. A.; Van Boom, J. H. Tetrahedron Lett. 1986, 27,
1211.
(14) Szabo, L.; Li, Y. S.; Polt, R. Tetrahedron Lett. 1991, 32, 585.
(15) Polt, R.; Szabo, L.; Treiberg, J.; Li, Y. S.; Hruby, V. J. J. Am.
Chem. Soc. 1992, 114, 10249.
(16) Westerduin, P.; Veeneman, G. H.; Van der Marel, G. A.;
Van Boom, J. H. Tetrahedron Lett. 1986, 27, 6271.
(17) Nikolaev, A. V.; Ivanova, I. A.; Shibaev, V. N.; Kochetkov,
N. K. Carbohydr. Res. 1990, 204, 65.
(18) Sinha, N. D.; Biernat, J.; McManus, J.; Koster, H. Nucl. Acid
Res. 1984, 12, 4539.
(19) Beaucage, S. L.; Caruthers, M. H. Tetrahedron Lett. 1981,
22, 1859.
J
4.93 (dd, 1 H, H6a, J5,6a = 5.0 Hz, J6a,6b = 12.4 Hz), 4.27 (ddd, 1 H,
H-5, J5,6b = 2.1 Hz), 3.96 (dd, 1 H, H-6b), 2.97–2.53 [m, 2 H, 2 ×
CH(CH3)2], 2.11–1.65 (4 × s, 12 H, 4 × COCH3), 1.63–1.59 [d, 12
H, 2 × CH(CH3)2]. 13C NMR (125 MHz, CDCl3) d: 172.13, 171.54,
170.19, 169.23, 139.14, 127.23, 126.78, 125.11, 123.45, 101.23,
98.34, 87.23, 77.12, 76.82, 72.14, 69.14, 69.11, 67.56, 58.33, 53.61,
44.16, 42.65, 41.86, 29.87, 24.56, 23.11, 22.13, 20.93, 20.84, 20.67,
20.55, 20.33, 19.89. FAB-MS: m/z 608.26 [M + Na]+.
Preparation compound 5a. To a stirred mixture of phosphoramid-
ite 3a (100 mg, 0.17 mmol) and amino acid 4a (62.4 mg, 0.17
mmol) in acetonitrile (1.5 mL) was added 1H-tetrazole (0.67 mL of
3 wt.% solution in acetonitrile). When TLC analysis (ethyl acetate/
hexane, 2 /3) showed the consumption of 3a, the reaction mixture
was cooled (–40 °C) and a solution of t-BuOOH in decane (77 mL,
5.0–6.0 M) added. The reaction mixture was left stirring at –40 °C
until TLC analysis (ethyl acetate/hexane, 2 /1) showed complete
formation of triester 5a. The reaction mixture was concentrated to a
small volume in vacuo and applied to a column of Sephadex LH-20
(eluent: CH2Cl2/MeOH, 2/1, v/v) to afford 5a as a colorless syrup
(70 mg, 50%). 31P NMR d: –3.19, –3.29 (2 × s, 2 diastereoisomers).
1H NMR (300 MHz, CDCl3) d: 8.10 (dd, 1 H, NH, J = 9.7 Hz, J =
8.7 Hz), 7.87 (d, 2 H, Ar-H, J = 7.3 Hz), 7.71 (d, 2 H, Ar-H, J = 6.8
Hz), 7.40–7.30 (m, 9 H, Ar-H), 5.90–5.85 (m, 1 H, OCH2CH=CH2),
5.68 (dd, 1 H, H-1, J1,2 = 1.5 Hz, J1,P = 7.3 Hz), 5.32–5.04 (m, 7 H,
H-2, H-3, OCH2Ph, H-9, Fmoc, OCH2CH=CH2), 4.61–4.55 (m, 3
H, OCH2CH=CH2, a-CH), 4.35–3.94 (m, 8 H, H-4, H-5, H-6a,b, b-
CH2, CH2O, Fmoc), 2.10–1.94 (4 × s, 12 H, 4 × CH3CO). 13C NMR
(125 MHz, DMSO) d: 170.63, 170.15, 170.02, 169.56, 132.81,
118.69, 118.50, 95.55, 79.47, 70.60, 68.84, 68.69, 68.39, 67.45,
65.98, 65.26, 63.59, 62.12, 28.74, 21.19, 21.12, 21.05, 19.69,
19.59. FAB-MS: m/z 730.99 [M + Na]+.
(20) O’Donnell, M. J.; Polt, R. J. Org. Chem. 1982, 47, 2663.
(21) Manabe, S.; Sakamoto, K.; Nakahara, Y.; Sisido, M.;
Hohsaka, T.; Ito, Y. Bioorg. Med. Chem. 2002, 10, 573.
(22) Otvos, L.; Elekes, I.; Lee, V. M. Y. Intern. J. Pept. Prot. Res.
1989, 34, 129.
(23) Kitas, E. A.; Perich, J. W.; Tregear, G. W.; Johns, R. B. J.
Org. Chem. 1990, 55, 4181.
(24) McMurray, J. S.; Coleman, D. R.; Wang, W.; Campbell, M.
L. Biopolymers 2001, 60, 3.
Synlett 2003, No. 9, 1373–1375 ISSN 1234-567-89 © Thieme Stuttgart · New York