P. N. W. Baxter
FULL PAPER
3.126 (s, 2H; H-C C)), 1.141 ppm (s, 42H; CH(CH3)2); 13C NMR: d
[2] For the property-targeted synthesis of nanosized organic molecules,
see for example: a) N. C. Seeman, A. M. Belcher, Proc. Nat. Acad. Sci.
2002, 99, 6451; b) M. D. Watson, A. Fechtenkˆtter, K. M¸llen, Chem.
Rev. 2001, 101, 1267; c) Top. Curr. Chem. 2001, 212, whole volume;
d) Top. Curr. Chem. 2000, 210, whole volume; e) V. Balzani, A. Credi,
F. M. Raymo, J. F. Stoddart, Angew. Chem. 2000, 112, 3484; Angew.
Chem. Int. Ed. 2000, 39, 3348; f) Top. Curr. Chem. 1998, 197, whole
volume; g) Electronic Materials: The Oligomer Approach (Eds.: K.
M¸llen, G. Wegner), Wiley-VCH, Weinheim, 1998; h) N. C. Seeman,
Angew. Chem. 1998, 110, 3408; Angew. Chem. Int. Ed. 1998, 37,
3220.
ꢄ
155.1, 154.7, 151.7, 139.4, 138.0, 135.5, 135.1, 134.6, 124.4, 123.2, 122.9, 121.7,
ꢄ
ꢄ
ꢄ
ꢄ
ꢄ
120.4, 119.8, 104.8 (-C ), 92.8 (-C ), 91.7 (-C ), 87.6 (-C ), 81.8 (-C ), 78.5
ꢄ
ꢄ
(-C ), 18.7 (CH(CH3)2), 11.2 ppm (CH(CH3)2); IR: nÄ 3303 (H-C ) (m),
ꢄ
2942 (s), 2864 (s), 2156 (C C) (s), 1578 (s), 1446 (s), 881 (s), 817 (s), 753 (s)
680 cmÀ1 (s); UV/vis (CHCl3): lmax (e) 256 (76991), 270 (78223), 332
(84956), 345 nm (78382 mÀ1cmÀ1); fluorescence emission ([26] 1.3 Â
10À6 mol dmÀ3 in CHCl3, 300 nm excitation): lmax 356, 373 nm; FABMS:
(1% CF3COOH/NBA): m/z (%): 842 (100) [M H]; HRMS (FAB,
[M H]) calcd for C57H60N3Si2: 842.4326; found: 842.4334.
Cyclophane 5: In a well-ventilated hood, [Cu2(OAc)4] (2.40g, 1.32 Â
10À2 mol) was dissolved in hot pyridine (600 mL), and the solution left to
cool to ambient temperature, then bubbled with argon for 2 h. A solution of
26 (0.200 g, 2.37 Â 10À4 mol) in degassed pyridine (20 mL) was subsequent-
ly added dropwise to the [Cu2(OAc)4] solution over 8 h with continued
stirring and argon bubbling. A white suspended solid slowly formed during
the addition. After all the 26 had been added, the blue mixture was stirred
under a static atmosphere of argon at ambient temperature in the absence
of light for seven days. All solvent was then removed under reduced
pressure on a water bath, and distilled water (200 mL) added along with
excess ice, followed by the dropwise addition of concentrated aqueous
KCN (10 mL). The mixture was stirred for 0.2 h, filtered under vacuum,
and the collected solid washed with excess distilled water and air-dried. The
product was then boiled in toluene (250 mL), gravity filtered, and the
filtrate left to cool to ambient temperature. The solid which formed was
isolated by filtration under vacuum, washed with toluene (4mL), air-dried
and dissolved in boiling CHCl3 (500 mL). The hot solution was then
successively flash chromatographed three times on silica, eluting each
column first with CHCl3 followed by 2% MeCN/CHCl3. The progress of
the chromatographic purification was best monitored using a UV lamp
operating at 365 nm. Upon irradiation of the columns, the product and
impurities appeared as purple fluorescent bands. The product thus obtained
was suspended in acetone (4mL), filtered under vacuum, washed with
acetone and finally air dried to yield 5 (0.077 g, 39%) as a white solid. M.p.
>3208C.
[3] a) J. S. Moore, Acc. Chem. Res. 1997, 30, 402; b) J. K. M. Sanders in
Comprehensive Supramolecular Chemistry (Eds.: J. L. Atwood,
J. E. D. Davies, D. D. McNicol, F. Vˆgtle), Vol. 9, Templating, Self-
Assembly, and Self-Organisation (Vol. Eds.: J.-P. Sauvage, M. W.
Hosseini), Pergamon, Oxford, 1996. Chapter 4, p 131; c) S. Anderson,
H. L. Anderson, J. K. M. Sanders, Acc. Chem. Res. 1993, 26, 469.
[4] a) J. S. Melinger, Y. Pan, V. D. Kleiman, Z. Peng, B. L. Davis, D.
McMorrow, M. Lu, J. Am. Chem. Soc. 2002, 124, 12002; b) J. Wang, M.
Lu, Y. Pan, Z. Peng, J. Org. Chem. 2002, 67, 7781; c) V. J. Pugh, Q.-S.
Hu, L. Pu, Angew. Chem. 2000, 112, 3784; Angew. Chem. Int. Ed. 2000,
39, 3638; for a review of earlier literature with related structures, see:
¬
d) S. M. Grayson, J. M. J. Frechet, Chem. Rev. 2001, 101, 3819.
[5] ÷. ‹nsal, A. Godt, Chem. Eur. J. 1999, 5, 1728.
[6] For recent examples of nanosized ethynyl rods and wires with
aromatic bridging units, see for example: a) J. G. RodrÌguez, J. L.
Tejedor, J. Org. Chem. 2002, 67, 7631; b) S. H. Lee, T. Nakamura, T.
Tsutsui, Org. Lett. 2001, 3, 2005; c) A. Khatyr, R. Ziessel, J. Org.
Chem. 2000, 65, 3126. For reviews, see: d) U. H. F. Bunz, Chem. Rev.
2000, 100, 1605; e) P. F. H. Schwab, M. D. Levin, J. Michl, Chem. Rev.
1999, 99, 1863; f) J. M. Tour, Chem. Rev. 1996, 96, 537.
[7] a) A. Tanatani, T. S. Hughes, J. S. Moore, Angew. Chem. 2002, 114,
335; Angew. Chem. Int. Ed. 2002, 41, 325; b) T. Nishinaga, A. Tanatani,
K. Oh, J. S. Moore, J. Am. Chem. Soc. 2002, 124, 5934; c) R. B. Prince,
S. A. Barnes, J. S. Moore, J. Am. Chem. Soc. 2000, 122, 2758; d) R. B.
Prince, J. G. Saven, P. G. Wolynes, J. S. Moore, J. Am. Chem. Soc. 1999,
121, 3114; e) J. C. Nelson, J. G. Saven, J. S. Moore, P. G. Wolynes,
Science, 1997, 277, 1793.
[8] a) D. L. An, T. Nakano, A. Orita, J. Otera, Angew. Chem. Int. Ed.
2002, 41, 171; b) A. Orita, D. L. An, T. Nakano, J. Yaruva, N. Ma, J.
Otera, Chem. Eur. J. 2002, 8, 2005.
[9] a) Z. Wu, J. S. Moore, Angew. Chem. 1996, 108, 320; Angew. Chem.
Int. Ed. 1996, 35, 297; b) Z. Wu, S. Lee, J. S, Moore, J. Am. Chem. Soc.
1992, 114, 8730.
1H NMR (CDCl2CDCl2, 500 MHz, 808C): d 8.871 (d, 4J(6,4;6'',4'')
3
1.7 Hz, 4H; pyridine H6/6''), 8.680 (d, J(3,4;3'',4'') 8.3 Hz, 4H; pyridine
H3/3''), 8.541 (d, 3J(3',4';5',4') 7.8 Hz, 4H; pyridine H3'/5'), 8.033 (dd,
3J(4,3;4'',3'') 8.2 Hz, 4J(4,6;4'',6'') 2.1 Hz, 4H; pyridine H4/4 ''), 8.003 (t,
4
3J(4',3';4',5') 7.9 Hz, 2H; pyridine H4'), 7.749 (t, J(2,4;2,6) 1.4Hz, 4H;
phenyl H2), 7.696 (t, 4J(6,2;6,4) 1.5 Hz, 4H; phenyl H6), 7.636 (t,
4J(4,2;4,6) 1.5 Hz, 4H; phenyl H4), 1.231 ppm (s, 84H; CH(CH 3)2);
13C NMR (CDCl2CDCl2, 125.8 MHz, 1108C): d 155.6, 155.0, 151.6 (C6/6'',
py), 139.6 (C4/4'', py), 137.8 (C4', py), 135.7 (C2, ph), 135.3 (C4, ph), 135.0
(C6, ph), 125.0, 123.9, 122.6, 121.8 (C3'/5', py), 120.5 (C3/3'', py), 119.7, 105.0
[10] For a selection of recent reports on the synthesis and properties of
nanosized ethynylphenyl macrocyclic structures, see: a) S. Hˆger, S.
Rosselli, A.-D. Ramminger, V. Enkelmann, Org. Lett. 2002, 4, 4269;
b) S. Hˆger, D. L. Morrison, V. Enkelmann, J. Am. Chem. Soc. 2002,
124, 6734; c) Y. Yamaguchi, S. Kobayashi, N. Amita, T. Wakamiya, Y.
Matsubara, K. Sugimoto, Z. Yoshida, Tetrahedron Lett. 2002, 43, 3277;
d) Y. Tobe, N. Utsumi, K. Kawabata, A. Nagano, K. Adachi, S. Araki,
M. Sonoda, K. Hirose, K. Naemura, J. Am. Chem. Soc. 2002, 124,
5350; e) Y. Tobe, N. Utsumi, A. Nagano, M. Sonoda, K. Naemura,
Tetrahedron, 2001, 57, 8075; f) K. Nakamura, H. Okubo, M. Yama-
guchi, Org. Lett. 2001, 3, 1097; g) S. Hˆger, K. Bonrad, A. Mourran, U.
Beginn, M. Mˆller, J. Am. Chem. Soc. 2001, 123, 5651; h) P. H. Ge, W.
Fu, W. A. Herrmann, E. Herdtweck, C. Campana, R. D. Adams,
U. H. F. Bunz, Angew. Chem. 2000, 112, 3753; Angew. Chem. Int. Ed.
2000, 39, 3607; for reports of macrocyclic phenylethynyl belts, see: i) T.
Kawase, N. Ueda, K. Tanaka, Y. Seirai, M. Oda, Tetrahedron Lett.
2001, 42, 5509; j) M. Ohkita, K. Ando, T. Tsuji, Chem. Commun. 2001,
2570; k) M. Ohkita, K. Ando, T. Suzuki, T. Tsuji, J. Org. Chem. 2000,
65, 4385; for the synthesis and STM visualisation of nanosized
ethynylterthiophene macrocycles, see: l) E. Mena-Osteritz, P. B‰uerle,
Adv. Mater. 2001, 13, 243, and references therein; for reviews of the
field up to 1999, see: m) Top. Curr. Chem. 1999, 201, whole volume;
n) S. Hˆger, J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2685.
[11] a) Y. Hosokawa, T. Kawase, M. Oda, Chem. Commun. 2001, 1948;
b) Y. Tobe, N. Utsumi, A. Nagano, K. Naemura, Angew. Chem. 1998,
110, 1347; Angew. Chem. Int. Ed. 1998, 37, 1285; c) D. L. Morrison, S.
Hˆger, Chem. Commun. 1996, 2313; d) U. Neidlein, F. Diederich,
Chem. Commun. 1996, 1493.
ꢄ
ꢄ
ꢄ
ꢄ
ꢄ
ꢄ
(-C ), 93.9 (-C ), 91.7 (-C ), 88.3 (-C ), 80.7 (-C ), 75.2 (-C ), 18.7
ꢄ
(CH(CH3)2), 11.6 ppm (CH(CH3)2); IR: nÄ 2942 (s), 2865 (s), 2154 (C C)
(m), 1577 (s), 1447 (s), 876 (s), 813 (s), 676 cmÀ1 (s); UV/Vis (CHCl3): lmax
(e) 261 (117543), 274 (129708), 298 (141700), 317 (238469), 338
(261379), 348 sh nm (175827mÀ1cmÀ1); fluorescence emission ([5] 2.9 Â
10À7 moldmÀ3 in CHCl3, 300 nm excitation): lmax 358, 375 nm; MALDI
MS (1, 8, 9-anthracenetriol matrix): m/z (%): 1681 (100) [M H]; HRMS
(FAB, 10% CF3COOH/CHCl3, [M H]) calcd for C114H115N6Si4:
1679.8260; found: 1679.8313.
Acknowledgement
¡
The College de France is acknowledged for financial support and Roland
Graff for the H 1H NMR COSY, NOESY, ROESY and H 13C HSQC
experiments. Prof. Alexandre Varnek is also thanked for the molecular
modelling studies.
1
1
[1] a) G. M. Whitesides, MRS Bulletin, 2002, 27, 56; b) D. N. Reinhoudt,
J. F. Stoddart, R. Ungaro, Chem. Eur. J. 1998, 4, 1349; c) G. M.
Whitesides, Angew. Chem. 1990, 102, 1247; Angew. Chem. Int. Ed.
1990, 29, 1209; d) D. Seebach, Angew. Chem. 1990, 102, 1363; Angew.
Chem. Int. Ed. 1990, 29, 1320, and references therein.
5020
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2003, 9, 5011 5022