D. Ma, W. Zhu / Tetrahedron Letters 44 (2003) 8609–8612
8611
Acknowledgements
The authors are grateful to the Chinese Academy of
Sciences, National Natural Science Foundation of
China (grant 29725205 and 29972049), and Qiu Shi
Science & Technologies Foundation for their financial
support.
References
1. Lebrun, B.; Braekman, J.-C.; Daloze, D.; Kalushkov, P.;
Pasteels, J. M. Tetrahedron Lett. 2001, 42, 4621–4623.
2. (a) Pu, X.; Ma, D. J. Org. Chem. 2003, 68, 4400–4405; (b)
Ma, D.; Xia, C.; Jiang, J.; Zhang, J.; Tang, W. J. Org.
Chem. 2003, 68, 442–451; (c) Ma, D.; Ma, N. Tetrahedron
Lett. 2003, 44, 3963–3965; (d) Ma, D.; Pu, X.; Wang, J.
Tetrahedron: Asymmetry 2002, 13, 2257–2260; (e) Ma, D.;
Zhu, W. Org. Lett. 2001, 3, 3927–3929; (f) Ma, D.; Xia,
C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3, 2189–2191; (g)
Wang, Y.; Ma, D. Tetrahedron: Asymmetry 2001, 12,
725–729; (h) Ma, D.; Sun, H. J. Org. Chem. 2000, 65,
6009–6016; (i) Ma, D.; Sun, H. Org. Lett. 2000, 2,
2503–2505; (j) Ma, D.; Sun, H. Tetrahedron Lett. 2000,
41, 1947–1950; (k) Ma, D.; Sun, H. Tetrahedron Lett.
1999, 40, 3609–3612; (l) Ma, D.; Zhang, J. Tetrahedron
Lett. 1998, 39, 9067–9068.
Scheme 3.
3. Medson, C.; Smallridge, A. T.; Trewhella, M. A. Tetra-
hedron: Asymmetry 1997, 7, 1049–1054.
4. Keck, G. E.; Murry, J. A. J. Org. Chem. 1991, 56,
6606–6611.
5. (a) Davies, S. G.; Ichihara, O. Tetrahedron: Asymmetry
1991, 2, 183–186; (b) Davies, S. G.; Ichihara, O.; Walters,
I. A. S. J. Chem. Soc., Perkin Trans. 1 1994, 1141–1147.
6. Comins, D. L.; LaMunyon, D. H.; Chen, X. J. Org.
Chem. 1997, 62, 8182–8187.
Figure 3. Stereochemical course during the hydrogenation of
13.
7. Selected data: [h]2D0 −2.1 (c 1.23, CHCl3); 1H NMR
(CDCl3, 400 MHz) l 4.76 (br s, 1H), 4.56 (br s, 1H),
3.90–3.84 (m, 1H), 2.68–2.62 (m, 2H), 2.43 (dt, J=15.3,
1.4 Hz, 1H), 2.33 (dd, J=15.3, 1.9 Hz, 1H), 1.86–1.78 (m,
1H), 1.61–1.58 (m, 3H), 1.49 (s, 9H), 1.43 (br s, 6H), 1.19
(d, J=6.0 Hz, 3H), 0.88–0.86 (m 12H), 0.05 (s, 6H); 13C
NMR (CDCl3, 75 MHz) l 209.2, 154.9, 80.4, 66.1, 52.9,
49.5, 45.7, 43.9, 43.7, 37.2, 31.7, 28.6 (3C), 26.8, 26.0
(3C), 24.0, 22.7, 18.1, 14.1, −4.0, −4.6; ESI-MS m/z 442
(M+H)+; ESI-HRMS calcd for C24H47NNaO4Si 464.3167
(M+Na)+, found 464.3174.
synthesize the 8-epi-hyperaspine at this moment. Thus,
reduction of 15 with LS-Selectride in THF at −78°C
produced an axial alcohol,11 which was reacted with
pyrrole 2-carboxylic acid chloride under the action of
triethylamine to give 8-epi-hyperaspine 1612 in 66%
yield (Scheme 4).
In conclusion, we have developed a stereocontrolled
route (12 linear steps and 14.8% overall yield) for
synthesizing (−)-8-epi-hyperaspine, which will be useful
for structure–activity relationship studies of hyper-
aspine. In addition, the chemistry presented here should
be of benefit for synthesizing other polysubstituted
piperidines.
8. Selected data: [h]2D0 −5.1 (c 1.1, CHCl3); 1H NMR
(CDCl3, 300 MHz) l 4.86 (d, J=7.8 Hz, 1H), 3.60 (d,
J=7.8 Hz, 1H), 3.60–3.55 (m, 1H), 2.47–2.31 (m, 5H),
1.68–1.47 (m 5H), 1.27–1.20 (m, 9H), 0.91–0.86 (m, 3H);
13C NMR (CDCl3, 75 MHz) l 207.8, 83.4, 73.0, 60.0,
58.7, 47.7, 46.3, 40.5, 32.5, 32.0, 23.6, 22.4, 21.0, 13.9; MS
m/z 239 (M+); HRMS calcd for C14H25NO2 239.1885
(M+), found 239.1915.
9. For a review, see: Crabb, T. A.; Newton, R. F.; Jackson,
D. Chem. Rev. 1971, 71, 109–126.
10. (a) Deslongchamps, P. Stereoelectronic Effects in Organic
Chemistry; Pergamon Press: Oxford, 1983; (b) Stevens,
R. V. Acc. Chem. Res. 1984, 17, 289–296.
11. Bardot, V.; Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.;
Remuson, R. Heterocycles 1998, 48, 507–518.
Scheme 4.