2008
S. Serra, C. Fuganti
LETTER
Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon Press: New
York, 1996, 297. (e) Friedrichsen, W. In Comprehensive
Heterocyclic Chemistry II, Vol. 2; Katritzky, A. R.; Rees, C.
W.; Scriven, E. F. V., Eds.; Pergamon Press: New York,
1996, 351. (f) Keay, B. A.; Dibble, P. W. In Comprehensive
Heterocyclic Chemistry II, Vol. 2; Katritzky, A. R.; Rees, C.
W.; Scriven, E. F. V., Eds.; Pergamon Press: New York,
1996, 395.
(12) The Wittig reaction of ylide 8 with the aldehydes affords the
3-E-alkylidene-succinic acid monoalkyl esters in a highly
stereoselective way; for previous studies on this reaction
see: (a) Paquette, L. A.; Schulze, M. M.; Bolin, D. J. Org.
Chem. 1994, 59, 2043. (b) Röder, E.; Krauss, H. Liebigs
Ann. Chem. 1992, 177.
(13) Acids 9a–f (50 mmol) were dissolved in acetic anhydride
(48 mL, 0.5 mol). To this solution, anhyd sodium acetate
(8.2 g, 0.1 mol) and hydroquinone (275 mg, 2.5 mmol) were
added in one portion. The obtained heterogeneous mixture
was heated at reflux for 1 h under a nitrogen atmosphere.
After cooling to r.t., the acetic anhydride was removed in
vacuo and the residue was treated with ethyl acetate (250
mL) and water (100 mL). The organic phase was separated,
dried (Na2SO4) and concentrated under reduced pressure.
The residue was purified by chromatography and
(3) (a) Carvalho, C. F.; Sargent, M. V. J. Chem. Soc., Perkin
Trans. 1 1984, 1621. (b) Carvalho, C. F.; Sargent, M. V. J.
Chem. Soc., Perkin Trans. 1 1984, 1613. (c) Åkermark, B.;
Eberson, L.; Jonsson, E.; Pettersson, E. J. Org. Chem. 1975,
40, 1365.
(4) (a) Arienti, A.; Bigi, F.; Maggi, R.; Moggi, P.; Rastelli, M.;
Sartori, G.; Trerè, A. J. Chem. Soc., Perkin Trans. 1 1997,
1391. (b) Yamato, T.; Hideshima, C.; Prakash, G. K. S.;
Olah, G. A. J. Org. Chem. 1991, 56, 3192. (c) Novák, J.;
Salemink, C. A. Tetrahedron Lett. 1983, 24, 101.
(d) Novák, J.; Salemink, C. A. J. Chem. Soc., Perkin Trans.
1 1983, 2873.
crystallization to give phenol derivatives 4a–f.
(14) Jorapur, V. S.; Duffley, R. P.; Razdan, R. K. Synth.
Commun. 1984, 14, 203.
(15) Duff, J. C. J. Chem. Soc. 1941, 547.
(5) (a) Jean, F.; Melnyk, O.; Tartar, A. Tetrahedron Lett. 1995,
36, 7657. (b) Tye, H.; Eldred, C.; Wills, M. Synlett 1995,
770.
(16) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.
(17) All new compounds were fully characterized. Selected
analytical data:
(6) (a) Katritzky, A. R.; Fali, C. N.; Li, J. J. Org. Chem. 1997,
62, 8205. (b) Sha, C.-K.; Lee, R.-S. Tetrahedron 1995, 51,
193. (c) Iwasaki, M.; Kobayashi, Y.; Li, J.-P.; Matsuzaka,
H.; Ishii, Y.; Hidai, M. J. Org. Chem. 1991, 56, 1922.
(d) Carvalho, C. F.; Sargent, M. V. J. Chem. Soc., Perkin
Trans. 1 1984, 1605. (e) Scannell, R. T.; Stevenson, R. J.
Chem. Soc., Perkin Trans. 1 1983, 2927. (f) Scannell, R. T.;
Stevenson, R. J. Chem. Res., Synop. 1983, 319. (g)Sargent,
M. V.; Stransky, P. O. J. Chem. Soc., Perkin Trans. 1 1982,
1605. (h) Fujiwara, Y.; Maruyama, O.; Yoshidomi, M.;
Taniguchi, H. J. Org. Chem. 1981, 46, 851.
12: Anal. Calcd for C14H18O2: C, 77.03; H, 8.31. Found: C,
77.15; H, 8.35. Bp 150 °C/0.5 mmHg. 1H NMR (250 MHz,
CDCl3): d = 1.22 (6 H, d, J = 6.9 Hz), 2.23 (3 H, s), 2.50–
2.85 (1 H, bs), 3.38 (1 H, m), 3.86 (3 H, s), 4.58 (2 H, s), 6.93
(1 H, d, J = 8.0 Hz), 7.10 (1 H, d, J = 8.0 Hz). EI-MS: m/z =
219 (M+ + 1), 218 (M+), 203, 187, 172, 159, 141, 128, 115,
105, 91, 77. FT-IR (film): n = 813, 1029, 1077, 1237, 1273,
1405, 1459, 1481, 1571, 2225, 2929, 3407 cm–1.
13: Anal. Calcd for C20H24O5: C, 69.75; H, 7.02. Found: C,
69.60; H, 7.10. Mp 59–60 °C (hexane). 1H NMR (250 MHz,
CDCl3): d = 1.22 (6 H, d, J = 6.9 Hz), 1.31 (3 H, t, J = 7.1
Hz), 2.24 (3 H, s), 3.34 (1 H, m), 3.77 (2 H, s), 3.83 (3 H, s),
4.26 (2 H, q, J = 7.1 Hz), 6.95 (1 H, d, J = 8.0 Hz), 7.15 (1
H, d, J = 8.0 Hz), 7.15 (1 H, s). EI-MS: m/z = 345 (M+ + 1),
344 (M+), 316, 300, 285, 270, 255, 239, 225, 209, 195, 173,
165, 152, 128, 115, 97. FT-IR (nujol): n = 762, 1031, 1093,
1212, 1265, 1376, 1459, 1619, 1699, 1719, 2193 cm–1.
14: Anal. Calcd for C21H22O5: C, 71.17; H, 6.26. Found: C,
71.10; H, 6.25. Mp 113–114 °C (isopropyl ether). 1H NMR
(250 MHz, CDCl3): d = 1.36 (6 H, d, J = 6.9 Hz), 1.42 (3 H,
t, J = 7.2 Hz), 2.45 (3 H, s), 2.54 (3 H, s), 3.99 (1 H, m), 4.42
(2 H, q, J = 7.2 Hz), 7.19 (1 H, d, J = 7.7 Hz), 7.30 (1 H, d,
J = 7.7 Hz), 7.75 (1 H, d, J = 1.2 Hz), 8.16 (1 H, d, J = 1.2
Hz). EI-MS: m/z = 355 (M+ + 1), 354 (M+), 312, 297, 283,
267, 255, 239, 224, 205, 195, 178, 165, 152, 139, 128, 115,
102, 89. FT-IR(nujol): n = 770, 1065, 1195, 1229, 1310,
1368, 1411, 1463, 1510, 1571, 1712, 1771 cm–1.
(7) Serra, S.; Fuganti, C.; Moro, A. J. Org. Chem. 2001, 66,
7883; and references cited therein.
(8) Serra, S.; Fuganti, C. Synlett 2002, 1661.
(9) 2-Iodoanisole 5a is commercially available. The substituted
2-iodoanisoles 5b, 5c and 5e were prepared from 1,4-
dimethoxy-3-methylbenzene, p-nitroanisole and
hydroquinone dimethyl ether, respectively by halogenation
according to the following references: (a) Lucht, B. L.;
Mao, S. S. H.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120,
4354. (b) Robinson, G. M. J. Chem. Soc. 1916, 109, 1078.
(c) Wariishi, K.; Morishima, S.-I.; Inagaki, Y. Org. Proc.
Res. Dev. 2003, 7, 98; respectively. (d) The substituted 2-
iodoanisoles 5d and 5f were prepared from p-
hydroxybenzoic acid and b-naphthol respectively, by
halogenation followed by methylation with Me2SO4/K2CO3
in dry acetone. The above mentioned halogenation reaction
was performed according to: Edgar, K. J.; Falling, S. N. J.
Org. Chem. 1990, 55, 5287.
Cannabifuran 15: Anal. Calcd for C21H26O2: C, 81.25; H,
8.44. Found: C, 81.00; H, 8.45. Mp 79–80 °C (hexane). 1H
NMR (250 MHz, CDCl3): d = 0.89 (3 H, t, J = 6.6 Hz), 1.34
(6 H, d, J = 6.8 Hz), 1.20–1.46 (4 H, m), 1.55–1.81 (2 H, m),
2.53 (3 H, s), 2.66 (2 H, t, J = 7.5 Hz), 4.41 (1 H, m), 5.55
(1 H, bs), 6.46 (1 H, s), 7.01 (1 H, s), 7.17 (2 H, m). EI-MS:
m/z = 311 (M+ + 1), 310 (M+), 295, 281, 267, 254, 238, 225,
211, 191, 178, 165, 152, 139, 119, 105, 89. FT-IR (nujol):
n = 760, 815, 1048, 1061, 1219, 1252, 1426, 1514, 1588,
1618, 1635, 3500 cm–1.
(10) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 4467. (b) The coupling reaction was performed
in THF solution using 2 equiv of propargyl alcohol, Et3N as
base and an equimolar amount of copper and palladium
catalysts (0.01 equiv). When the coupling reaction was
performed with diiodoanisole 5e, only 1 equiv of propargyl
alcohol was used in the preparation.
(11) For the preparation of this ylide see: Hudson, R. F.; Chopard,
P. A. Helv. Chim. Acta 1963, 46, 2178.
(18) Becker, H.-D.; Björk, A.; Adler, E. J. Org. Chem. 1980, 45,
1596.
Synlett 2003, No. 13, 2005–2008 © Thieme Stuttgart · New York