9004 J in et al.
Macromolecules, Vol. 36, No. 24, 2003
Ta ble 2. Sp a ce En vir on m en t Sim u la tion Da ta for Selected P F CB P olym er s
solar absorptivity (R)
thermal emissivity (ꢀ)
AO fluence
(atoms/cm2)
mass loss
(wt %)
material
preexposure
postexposure
preexposure
postexposure
p oly(4-co-10)
p oly10
2.6 × 1020
2.2 (0.85)a
33.2 (8.6)a
0.163
0.144
0.193
0.164
0.680
0.565
0.650
0.411
3.88 × 1020
a
AO fluence normalized mass loss percent.
A key property of PPO containing PFCB polymers is
their expected resistance to atomic oxygen (AO) due to
the PPO content, which has been established in many
ground-simulated and space tests for the TOR materi-
als.20,23 AO is formed by the photodissociation of upper
atmosphere O2 by short-wavelength UV radiation and
is a prevalent species in LEO between the altitude of
160 and 800 km.15-17 AO is very reactive and quickly
erodes organic polymers if they are unprotected.19 AO
durability was evaluated by mass loss caused by erosion
after an AO exposure level of (2-6) × 1020 atoms/cm2
(equivalent to an exposure of 4 month duration in LEO)
and with accompanied UV irradiation comparable to
several hundred ESHs (equivalent solar hours). Table
2 presents the data for p oly(4-co-10) containing 12.5
wt % monomer 4. This copolymer gave higher quality
films for the AO tests and was similar in molecular
weight and other properties to the copolymer containing
25 wt % shown in Table 1. The copolymer experienced
only 2.2 wt % mass loss compared to 33.2 wt % for
p oly10 (without PPO), which equates to an AO fluence
normalized mass loss ratio of 1:10. These preliminary
results indicate an order of magnitude increase in AO-
erosion resistance for a PFCB copolymer containing only
12.5 wt % PPO monomer 4. The solar absorptivity (R)
relates to the quantity of incoming solar energy that is
absorbed by the film, while the thermal emissivity (ꢀ)
describes the ability of the film to radiate energy from
the surface.22 After AO exposure, the R value will
increase and the ꢀ value will decrease due to the change
of the optical transparency of the film. Incorporation of
the PPO monomer did not show a significant change in
the solar absorptivities and thermal emissivities. How-
ever, the thermal emissivities of p oly10 (without PPO)
decreased dramatically.
materials, Mettler Toledo for donation of the DSC820
and 851TGA/SDTA system, and NASA Marshal for
space environment simulation data. We gratefully ac-
knowledge Kim Ivey (Clemson University) for assistance
with FTIR data, and S. Kumar, P. Go, and H. Liu for
synthetic expertise. D.W.S. is a Cottrell Scholar of
Research Corporation.
Refer en ces a n d Notes
(1) Shobha, H. K.; J ohnson, H.; McGrath, J . E. J . Polym. Sci.,
Part A: Polym. Chem. 2001, 39, 2904.
(2) Ghassemi, H.; McGrath, J . E. Polymer 1997, 38, 3139.
(3) Meyer, G. W.; Pak, S. J .; Lee, Y. J .; McGrath, J . E. Polymer
1995, 36, 2303.
(4) Grubbs, H. J .; Smith, C. D.; McGrath, J . E. Polym. Mater.
Sci. Eng. 1995, 65, 111.
(5) Smith, C. D.; Grubbs, H. J .; Websler, H. F.; Gungor, A.;
Wightman, J . P.; McGrath, J . E. High Perform. Polym. 1991,
3, 211.
(6) Bonaplata, E.; Ding, H.; Hanson, B. E.; McGrath, J . E.
Polymer 1995, 36, 3035.
(7) Bonaplata, E.; Priddy, D. B.; Smith, C. D.; McGrath, J . E.
Polym. Mater. Sci. Eng. 1994, 70, 405.
(8) Liu, S.; Cabasso, I. J . Polym. Sci., Part A: Polym. Chem.
1997, 35, 889.
(9) Yoon, T. H.; Lee, Y. J .; Gungor, A.; Smith, C. D.; McGrath,
J . E. In Adhesion Society Proceedings, Hilton Head, SC.,
Spring 1992; Vol. 15, p 200.
(10) J eong, K. U.; Kim, J .-J .; Yoon, T.-H. Polymer 2001, 42, 6019.
(11) Fitch, J . W.; Reddy, V. S.; Youngman, P. W.; Wohlfahrt, G.
A.; Cassidy, P. E. Polymer 2000, 41, 2301.
(12) Zhang, Y. H.; Tebby, J . C.; Wheeler, J . W. Eur. Polym. J .
1999, 35, 209.
(13) Chane-Ching, K.; Lequan, M.; Lequan, R. M.; Kajzar, F.
Chem. Phys. Lett. 1995, 242, 598.
(14) Smith, J . G., J r.; Thompson, C. M.; Watson, K. A.; Connell,
J . W. High Perform. Polym. 2002, 14, 225.
(15) Smith, J . G., J r.; Connell, J . W.; Hergenrother, P. M. Polymer
1994, 35, 2834.
(16) Connell, J . W.; Smith, J . G., J r.; Hergenrother, P. M. Polymer
1995, 36, 5.
Con clu sion s. The reaction of p-BrArOCFdCF2 (for
Ar ) phenyl and biphenyl) with tert-butyllithium af-
forded the aryllithium reagent smoothly below -20 °C.
Upon treatment with phenylphosphonic dichloride, two
novel bis(trifluorovinyl ether) monomers containing the
phenylphosphine oxide group were successfully pre-
pared. Polymerization proceeded thermally above 150
°C and gave thermoplastic polymers that exhibited glass
transition temperatures of 169 and 224 °C, respectively.
Copolymerization with bis(4,4′-trifluorovinyloxy)biphen-
yl gave film-forming transparent thermoplastic copoly-
mers with high Tg (>140 °C) and good thermal stability
(>450 °C). Preliminary atomic oxygen resistance tests
indicated an order of magnitude increase in PFCB AO
resistance when 12.5 wt % PPO monomer was incorpo-
rated into PFCB copolymers.
(17) Connell, J . W.; Smith, J . G., J r.; Hedrick, J . L. Polymer 1995,
36, 13.
(18) Connell, J . W. High Perform. Polym. 2000, 12, 43.
(19) Connell, J . W. In Fluoropolymer 2000; Smith, D. W., J r., Ed.;
EPS: Hattiesburg, MS, 2001; p 74.
(20) Connell, J . W.; Watson, K. A. In Gossamer Spacecraft:
Membrane and Inflatable Structures Technology for Space
Applications; J enkins, C. H. M., Ed.; AIAA: Reston, VA, 2001;
p 243.
(21) Smith, J . G., J r.; Connell, J . W.; Hergenrother, P. M. NASA
Tech. Briefs 1994, 18, 32.
(22) Watson, K. A.; Palmieri, F. L.; Connell, J . W. Macromolecules
2002, 35, 4968.
(24) Babb, D.; Boone, H.; Smith, D. W., J r.; Rudolf, P. J . Appl.
Polym. Sci. 1998, 69, 2005.
(25) Smith, D. W., J r.; Babb, D. A. Macromolecules 1996, 29, 852.
(26) Smith, D. W., J r.; Babb, D. A.; Shah, H. V.; Hoeglund, A.;
Traiphol, R.; Perahia, D.; Bone, H. W.; Langhoff, C.; Radler,
M. J . Fluorine Chem. 2001, 104, 109.
(27) Smith, D. W., J r.; Chen, S.; Kumar, S. M.; Ballato, J .;
Topping, C.; Shah, H. V.; Foulger, S. H. Adv. Mater. 2002,
14, 1585.
(28) Babb, D. A.; Ezzell, B. R.; Clement, K. S.; Richey, W. F.;
Kennedy, A. P. J . Polym Sci, Part A: Polym. Chem. 1993,
31, 3465.
Ack n ow led gm en t. We thank the Air Force Office
of Scientific Research (STTR with Triton Systems, Inc.),
National Textiles Center, the South Carolina NASA
Space Grant Consortium, SC EPSCoR, and the National
Science Foundation (DMR-CAREER Award to D.S.) for
partial support, and 3M Corp. for 3M Pre-tenured
Faculty Awards (D.S. and S.F.) for financial support.
We also thank The Dow Chemical Co. for starting
(29) J unmin, J .; Narayan, S.; Neilson, R.; Oxley, J .; Babb, D.;
Rondan, N.; Smith, D. W, J r. Organometallics 1998, 17, 783.
MA035241G