5
(a) S. Komiya, R. S. Srivastava, A. Yamamoto and T.
Yamamoto, Organometallics, 1985, 4, 1504; (b) S. Komiya, J.
Suzuki, K. Miki and N. Kasai, Chem. Lett., 1987, 1287; (c) Y.
Hayashi, T. Yamamoto, A. Yamamoto, S. Komiya and Y. Kushi,
J. Am. Chem. Soc., 1986, 108, 385; (d ) A. Yamamoto, Adv. Orga-
nometal. Chem., 1992, 34, 111.
JPH ¼ 14.4 Hz, 9H, PC(CH3)3), 1.34 (d, JPH ¼ 14.1 Hz, 18H,
PC(CH3)3), 1.23 (d, JPH ¼ 13.5 Hz, 9H, PC(CH3)3), ꢁ1.92
(dd, 1 H, JPP ¼ 27.6, 33 Hz, Os–H). 31P{1H} NMR (121
MHz): 27.6 (d, JPP ¼ 112 Hz, Os–P), 25.6 (d, JPP ¼ 112 Hz,
Os–P).
6
7
8
9
M. Olivan, E. Clot, O. Eisenstein and K. G. Caulton, Organo-
metallics, 1998, 17, 897.
S. Komiya and T. Shindo, J. Chem. Soc., Chem. Commun., 1984,
1672.
W. Buchowicz, J. C. Mol, M. Lutz and A. L. Spek, J. Organo-
metal. Chem., 1999, 588, 205.
3
t
0
=
[OsH(Z –CH2 CHOC(O)CH3)(CO)(P Bu2Me)2]BAr 4
=
Same procedure as above was followed except CH2 CHO-
1
C(O)CH3 was used. H NMR (300 MHz, 20 ꢀC): 6.73 (ddt,
JPH ¼ 5.4 Hz, JHH ¼ 6 Hz, JHH ¼ 11.7 Hz, 1H, CHO), 2.48
(m, CH2), 2.36 (t, J ¼ 5.7 Hz, 1H, CH2), 2.17 (s, 3H,
CH3CO2), 1.77 (vt, 3H, N ¼ 6.9 Hz, PCH3), 1.48 (vt, 3H,
N ¼ 6.9 Hz, PCH3), 1.41 (vt, 9H, N ¼ 14.4 Hz, PC(CH3)3),
1.34 (vt, 9H, N ¼ 14.4 Hz, PC(CH3)3), 1.24 (vt, 9H,
N ¼ 14.1 Hz, PC(CH3)3), 1.26 (vt, 9H, N ¼ 14.1 Hz,
PC(CH3)3), -2.39 (t, 1 H, JPH ¼ 30 Hz, Os–H). 31P{1H}
NMR (121 MHz): 25.9 (s). IR (CD2Cl2): 1959 (n(CO), 1619
J. Wolf, W. Stuer, C. Grunwald, H. Werner, P. Schwab and M.
¨
Schulz, Angew. Chem., Int. Ed. Engl., 1998, 37, 1124.
¨
´
10 H. Gerard, E. Clot, C. Giessner-Prette, K. G. Caulton, E. R.
Davidson and O. Eisenstein, Organometallics, 2000, 19, 2291.
11 P. Gonzalez-Herrero, B. Weberndo¨rfer, K. Ilg, J. Wolf and H.
Werner, Angew. Chem., Int. Ed. Engl., 2000, 39, 3266.
12 Y. Musashi and S. Sakaki, J. Am. Chem. Soc., 2000, 122, 3867.
13 R. Kuhlman, E. Clot, C. Leforestier, W. E. Streib, O. Eisenstein
and K. G. Caulton, J. Am. Chem. Society, 1997, 119, 10 153.
14 P. S. Hallman, B. R. McGarvey and G. Wilkinson, J. Chem. Soc.
(A), 1968, 3143.
´
=
(n(C O)).
15 P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc.,
1996, 118, 100.
16 T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18.
17 (a) G. Ferrando and K. G. Caulton, Inorg. Chem., 1999, 38, 4168;
(b) G. J. Spivak, J. N. Coalter III, M. Olivan, O. Eisenstein and
K. G. Caulton, Organometallics, 1998, 17, 999.
18 D. Compare: Huang, J. C. Bollinger, W. E. Streib, K. Folting,
V. Young Jr., O. Eisenstein and K. G. Caulton, Organometallics,
2000, 19, 2281.
19 A. J. Edwards, S. Elipe, M. A. Esteruelas, F. J. Lahoz, L. A. Oro
and C. Valero, Organometallics, 1997, 16, 3828.
20 K. B. Renkema, J. C. Huffman and K. G. Caulton, Polyhedron,
1999, 18, 2575.
21 D. V. Yandulov, D. Huang, J. C. Huffman and K. G. Caulton,
Inorg. Chem., 2000, 39, 1919.
22 J. N. Coalter, W. E. Streib and K. G. Caulton, Inorg. Chem.,
2000, 39, 3749.
Computational details
The calculations were carried out using the Gaussian 98 set of
programs24 within the framework of DFT at the B3PW91
level.25,26 LANL2DQ effective core potentials (quasi-relativis-
tic for the metal centers) were used to replace the 28 innermost
electrons of Ru27 and the ten core electrons of Cl, and P.28 The
associated double-basis set was used27,28 and was augmented
by a d polarization function for Cl, and P.29 The other atoms
were represented by a 6-31 (d,p) basis set (5d).30 Full geometry
optimization was performed with no symmetry restriction, and
the nature of the minima was assigned by analytical frequency
calculations.
23 J. Sauer and J. Wilson, J Am. Chem. Soc., 1955, 77, 3793.
24 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr.,
R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D.
Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala,
Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G.
Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.
Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A.
Pople, Gaussian 98 Revision A.7, Gaussian, Inc., Pittsburgh,
PA, 1998.
Acknowledgements
This work was supported by the U.S. National Science Foun-
dation, the French CNRS, and the University of Montpellier
2. The authors are grateful to Indiana University Computing
Center for a generous donation of computational time.
References
1
(a) J. N. Coalter, J. C. Bollinger, J. C. Huffman, U. Werner-
Zwanziger, K. G. Caulton, E. R. Davidson, H. Gerard, E. Clot
and O. Eisenstein, New J. Chem., 2000, 24, 9; (b) G. Ferrando,
´
H. Gerard, G. J. Spivak, J. N. Coalter, III, J. C. Huffman, O.
25 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
Eisenstein and K. G. Caulton, Inorg. Chem., 2001, 40, 6610.
Bis(trifluoroacetato) ruthenium carbenes bearing triaryl phos-
phines have been reported Z. Wu, S. T. Nguyen, R. H. Grubbs
and J. W. Ziller, J. Am. Chem. Soc., 1995, 117, 5503.
J. U. Notheis, R. H. Heyn and K. G. Caulton, Inorg. Chim. Acta,
1995, 229, 187.
26 J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13 244.
27 P. G. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
28 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284.
29 A. H. Ho¨llwarth, M. B. Bo¨hme, S. Dapprich, A. W. Ehlers, A.
Gobbi, V. Jonas, K. F. Ko¨hler, R. Stegmann, A. Veldkamp and
G. Frenking, Chem. Phys. Lett., 1993, 208, 237.
2
3
4
´
C. Grunwald, O. Gevert, F. Wolf, P. Gonzalez-Herrero and H.
¨
Werner, Organometallics, 1996, 15, 1960.
30 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973,
28, 213.
1462
New J. Chem., 2003, 27, 1451–1462