Exp a n d in g th e Gen etic Alp h a bet:
Non -Ep im er izin g Nu cleosid e w ith th e
pyDDA Hyd r ogen -Bon d in g P a tter n
Daniel Hutter† and Steven A. Benner*,†,‡
Department of Chemistry and Department of Anatomy
and Cell Biology, University of Florida,
Gainesville, Florida 32611-7200
benner@chem.ufl.edu
Received J une 25, 2003
F IGURE 1. Nonstandard base pair with the pyDDA‚puAAD9
hydrogen-bonding pattern. Pyrimidine analogue 2 was believed
to suffer epimerization less likely than known analogue 1.3f
Abstr a ct: 6-Amino-3-(2′-deoxy-â-D-ribofuranosyl)-5-nitro-
1H-pyridin-2-one (4), a C-glycoside exhibiting the nonstand-
ard pyDDA hydrogen-bonding pattern, was synthesized via
Heck coupling. The nitro group greatly enhances the stabil-
ity of the nucleoside toward acid-catalyzed epimerization
without leading to significant deprotonation of the hetero-
cycle at physiological pH. These results make nucleoside 4
a promising candidate for an expanded genetic alphabet.
These conditions are fulfilled for the pyDDA‚ puAAD9
base pair (Figure 1). While the purine base and the
corresponding nucleoside 3 have been synthesized to
study their antiviral activity as well as their capability
to form purine‚purine base pairs,10 an unambiguous
pyDDA hydrogen-bonding pattern has so far only been
reported for the RNA-pyrazine analogue 1,3f while pseudo-
isocytidine is reported to exhibit this hydrogen-bonding
pattern under certain conditons only.5h In addition to
being a component of an expanded genetic information
system, these analogues also exhibit at neutral pH the
hydrogen-bonding pattern of protonated cytosine.
The pyDDA hydrogen-bonding pattern can be achieved
only with a C-glycoside, where the heterocycle is coupled
to the sugar moiety by a C-C bond rather than a C-N
bond, which is found in the standard nucleosides. A
special feature of C-nucleosides is their susceptibility to
epimerization if an electron-donating substituent is
present in a suitable position on the heterocycle (Scheme
1). This phenomenon was described for pseudouridine
The Watson-Crick nucleobase pair in DNA follows two
rules of complementarity: size complementarity (large
purines pair with small pyrimidines) and hydrogen-
bonding complementarity (hydrogen bond donors from
one base complement hydrogen bond acceptors from the
other base).1 A decade ago, we noted that 12 nucleobases
forming six base pairs joined by mutually exclusive
hydrogen-bonding patterns are possible within the Wat-
son-Crick restraints and that these might be function-
alized to enable a single biopolymer capable of both
genetics and catalysis.2 Expanded genetic alphabets have
now been further explored in a variety of laboratories,
and the possibility of a fully artificial system has been
advanced.3-7
Various analyses of the interaction between poly-
merases and their substrates suggest that the poly-
merase seeks two unshared pairs of electrons in the
minor groove, at position 3 of the purine (or analogue)
and at position 2 of the pyrimidine (or analogue).8 In
addition, the base pairs that form three hydrogen bonds
are expected to contribute more to duplex stability than
pairs joined by just two hydrogen bonds.
(5) Modified H-bonding patterns: (a) Seela, F.; Wei, C. F. Chem.
Commun. 1997, 1869. (b) Seela, F.; He, Y. J . Org. Chem. 2003, 68,
367. (c) Hirao, I.; Ohtsuki, T.; Mitsui, T. Yokoyama, S. J . Am. Chem.
Soc. 2000, 122, 6118. (d) Hirao, I.; Ohtsuki, T.; Fujiwara, T.; Mitsui,
T.; Yokogawa, T.; Okuni, T.; Nakayama, H.; Takio, K.; Yabuki, T.;
Kigawa, T.; Kodama, K.; Yokogawa, T.; Nishikawa, K.; Yokoyama, S.
Nature Biotechnol. 2002, 20, 177. (e) Searls, T.; McLaughlin, L. W.
Tetrahedron 1999, 55, 11985. (f) Chen, D. L.; McLaughlin, L. W. J .
Org. Chem. 2000, 65, 7468. (g) Roberts, C.; Banduru, R.; Switzer, C.
J . Am. Chem. Soc. 1997, 119, 4640. (h) Oyelere, A. K.; Strobel, S. A. J .
Am. Chem. Soc. 2000, 122, 10259.
(6) Hydrophobic base pairs: (a) Kool, E. T. Curr. Opin. Chem. Biol.
2000, 4, 602. (b) Kool, E. T.; Morales, J . C.; Guckian, K. M. Angew.
Chem., Int. Ed. 2000, 39, 990. (c) Kool, E. T. Acc. Chem. Res. 2002, 35,
936. (d) Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J .; Schultz, P. G.;
Romesberg, F. E. J . Am. Chem. Soc. 2000, 122, 3274. (e) Berger, M.;
Luzzi, S. D.; Henry, A. A.; Romesberg, F. E. J . Am. Chem. Soc. 2002,
124, 1222.
(7) Metal chelation: (a) Weizman, H.; Tor, Y. J . Am. Chem. Soc.
2001, 123, 3375. (b) Zimmermann, N.; Meggers, E.; Schultz, P. G. J .
Am. Chem. Soc. 2002, 124, 13684. (c) Tanaka, K.; Tengeiji, A.; Kato,
T.; Toyama, N.; Shiro, M.; Shionoya, M. J . Am. Chem. Soc. 2002, 124,
12494.
(8) Steitz, T. In Biological Organization: Macromolecular Interac-
tions at High Resolution; Burnett, R. M., Vogel, H. J ., Eds.; Academic
Press: New York, 1987; pp 45-55.
* To whom correspondence should be addressed. Tel: +352-392-
7773. Fax: +352-392-7918.
† Department of Chemistry.
‡ Department of Anatomy and Cell Biology.
(1) (a) Watson, J . D.; Crick, F. H. C. Nature (London) 1953, 171,
737. (b) Watson, J . D.; Crick, F. H. C. Nature (London) 1953, 171, 964.
(2) (a) Switzer, C. Y.; Moroney, S. E.; Benner, S. A. J . Am. Chem.
Soc. 1989, 111, 8322. (b) Piccirilli, J . A.; Krauch, T.; Moroney, S. E.;
Benner, S. A. Nature (London) 1990, 343, 33.
(3) (a) Piccirilli, J . A.; Krauch, T.; MacPherson, L. J .; Benner, S. A.
Helv. Chim. Acta 1991, 74, 397. (b) Voegel, J . J .; Altorfer, M. M.;
Benner, S. A. Helv. Chim. Acta 1993, 76, 2061. (c) Voegel, J . J .; von
Krosigk, U.; Benner, S. A. J . Org. Chem. 1993, 58, 7542. (d) Heeb, N.
V.; Benner, S. A. J . Am. Chem. Soc. 1994, 116, 6929. (e) Voegel, J . J .;
Benner, S. A. J . Am. Chem. Soc. 1994, 116, 6929. (f) von Krosigk, U.;
Benner, S. A. J . Am. Chem. Soc. 1995, 117, 5361. (g) Voegel, J . J .;
Benner, S. A. Helv. Chim. Acta 1996, 79, 1863. (h) Kodra, J . T.; Benner,
S. A. Synlett 1997, 939. (i) J urczyk, S. C.; Battersby, T. R.; Kodra. J .
T.; Park, J . H.; Benner, S. A. Helv. Chim. Acta 1999, 82, 1005. (j)
J urczyk, S. C.; Horlacher, J .; Devine, K. G.; Benner, S. A.; Battersby,
T. R. Helv. Chim. Acta 2000, 83, 1517. (k) Rao, P.; Benner, S. A. J .
Org. Chem. 2001, 66, 5012.
(9) pyDDA: Pyrimidine analogue carrying a H-bond donor-donor-
acceptor motif proceeding from the major to the minor groove.
puAAD: purine analogue carrying an H-bond acceptor-acceptor-
donor motif.
(10) (a) Kim, S. H.; Bartholomew, D. G.; Allen, L. B.; Robins, R. K.;
Revankar, G. R.; Dea. P. J . Med. Chem. 1978, 21, 883. (b) Rosemeyer,
H.; Seela, F. J . Org. Chem. 1987, 52, 5136. (c) Seela, F.; Amberg, S.;
Melenewski, A.; Rosemeyer, H. Helv. Chim. Acta 2001, 84, 1996.
(4) (a) Service, R. F. Science 2000, 289, 232. (b) Wang, L.; Schultz,
P. G. Chem. Commun. 2002, 1.
10.1021/jo034900k CCC: $25.00 © 2003 American Chemical Society
Published on Web 11/13/2003
J . Org. Chem. 2003, 68, 9839-9842
9839