8.8, 14.1 Hz), 3.30 (3H, s), 1.40 (9H, s), 1.30 (3H, d, J ) 6.5 Hz);
13C NMR (CDCl3) δ 171.8, 146.3, 137.9, 132.2, 131.9, 130.3,
128.6, 126.2, 118.7, 94.7, 70.8, 55.7, 54.5, 36.5, 32.5, 18.8; MS
(m/z) 328 (M+ + Na); Anal. Calcd for C18H27NO3: C, 70.79; H,
8.91; N, 4.59. Found: C, 70.73; H, 8.95; N, 4.51. In the 1H and
13C NMR spectra of 2a , the minor signals on the basis of the
existence of the amide C-N rotamer were also observed in a
ratio of 15:1. 2a ′: white solid; [R]D ) +75.0 (c ) 1.0, CHCl3);
mp 59-60 °C; IR (KBr) 1667 cm-1; 1H NMR (CDCl3) δ 7.56 (1H,
dd, J ) 1.5, 8.2 Hz), 7.32 (1H, dt, J ) 1.8, 8.2 Hz), 7.18 (1H, dt,
J ) 1.5, 7.9 Hz), 7.12 (1H, dd, J ) 1.8, 7.9 Hz), 6.03 (1H, dddd,
J ) 5.0, 8.2, 10.0, 17.0 Hz), 5.17 (1H, d, J ) 10.0 Hz), 5.09 (1H,
dd, J ) 0.9, 17.0 Hz), 4.95 (1H, dd, J ) 5.0, 14.1 Hz), 4.48 (1H,
d, J ) 7.0 Hz), 4.19 (1H, d, J ) 7.0 Hz), 3.91 (1H, q, J ) 6.2 Hz),
3.33 (1H, dd, J ) 8.2, 14.1 Hz), 3.28 (3H, s), 1.37 (9H, s), 1.34
(3H, d, J ) 6.2 Hz); 13C NMR (CDCl3) δ 170.9, 146.1, 138.3,
132.4, 132.0, 129.8, 128.5, 126.2, 118.8, 96.3, 71.8, 55.8, 54.8,
As regards stereoselective synthesis of optically active
atropisomeric o-tert-butylanilide by other groups, only
one example has been reported by Curran’s group.3i,11
However, the ee of anilides obtained by their method
using crystallization-induced asymmetric transformation
is not sufficient for application to asymmetric reaction
(maximum 93% ee, 77% ee). On the other hand, by the
use of our method, anilides 3a (4a ) and 4b which are
already found to effectively work as chiral molecules4b,d
can be obtained in g97% ee.
In conclusion, we have succeeded in the diastereose-
lective synthesis of atropisomeric anilide derivatives with
high optical purity (g97% ee) through double stereodif-
ferentiative N-allylation of N-o-tert-butylphenyl lacta-
mide or -mandelamide using a (BINAP)Pd catalyst. In
addition, we also proposed plausible transition state
model for the origin of the diastereoselectivity based on
substrate control. The present reaction should provide
new and efficient methodology for the synthesis of
optically active atropisomeric anilide derivatives.
36.3, 32.6, 17.7; MS (m/z) 328 (M+ + Na). Anal. Calcd for C18H27
-
NO3: C, 70.79; H, 8.91; N, 4.59. Found: C, 70.62; H, 9.08; N,
4.59.
(S,R)- a n d (S,S)-N-Allyl-N-2-(ter t-bu tyl)p h en yl 2-Meth -
oxym eth oxyp h en yla ceta m id e (2b) a n d (2b′). 2b and 2b′
were prepared from 1b (164 mg, 0.5 mmol) in accordance with
the general procedure. Purification by column chromatography
(hexane/AcOEt ) 4) and subsequent MPLC (hexane/AcOEt )
5) gave 2b′ (less polar, 9 mg, 5%) and 2b (more polar, 162 mg,
88%). 2b: white solid; [R]D ) -2.0 (c ) 1.0, CHCl3); mp 58 °C;
Exp er im en ta l Section
Gen er a l p r oced u r e for d ia ster eoselective N-Allyla tion
w ith BINAP -P d Ca ta lyst. Under Ar atmosphere, to a suspen-
sion of NaH (20 mg, 0.5 mmol) in THF (2 mL) was added (S)-
lactamide 1a (133 mg, 0.5 mmol). After being stirred for 10 min
at room temperature, allylpalladium chloride dimer (4 mg, 0.011
mmol), (R)-BINAP (14 mg, 0.022 mmol), and allyl acetate (81
µL, 0.75 mmol) in THF (1 mL) were added to the mixture at
-78 °C, and then the reaction mixture was stirred for 15 h from
-78 to 0 °C. The mixture was poured into 2% HCl solution and
extracted with AcOEt. The AcOEt extracts were washed with
brine, dried over MgSO4, and evaporated to dryness. Purification
of the residue by column chromatography (hexane/AcOEt ) 12)
gave 2a ′ (less polar, 9 mg, 6%) and 2a (more polar, 137 mg, 90%).
(S,R)- a n d (S,S)-N-Allyl-N-2-(ter t-bu tyl)p h en yl 2-Meth -
oxym et h oxyp r op a n a m id e (2a ) a n d (2a ′). 2a : white solid;
[R]D ) -104.6 (c ) 1.0, CHCl3); mp 34-35 °C; IR (KBr) 1667
1
IR (KBr) 1670 cm-1; H NMR (CDCl3) δ 7.57 (1H, dd, J ) 1.5,
8.0 Hz), 7.20-7.29 (4H, m), 7.06 (2H, dd, J ) 1.5, 8.0 Hz), 6.89
(1H, dt, J ) 1.5, 8.0 Hz), 6.09 (1H, dd, J ) 1.5, 8.0 Hz), 5.83
(1H, dddd, J ) 5.0, 8.5, 10.1, 17.4 Hz), 5.04 (1H, d, J ) 10.1
Hz), 4.99 (1H, tdd, J ) 1.2, 5.0, 14.4 Hz), 4.96 (1H, dd, J ) 1.2,
17.4 Hz), 4.91 (1H, s), 4.55 (1H, d, J ) 7.0 Hz), 4.41 (1H, d, J )
7.0 Hz), 3.30 (1H, dd, J ) 8.5, 14.4 Hz), 3.26 (3H, s), 1.46 (9H,
s); 13C NMR (CDCl3) δ 169.4, 146.5, 137.6, 135.6, 133.6, 132.3,
129.9, 129.5, 128.7, 128.6, 128.2, 126.0, 118.6, 93.4, 75.8, 55.9,
54.3, 36.4, 32.4; MS (m/z) 390 (M+ + Na). Anal. Calcd for C23H29
-
NO3: C, 75.17; H, 7.95; N, 3.81. Found: C, 75.21; H, 7.93; N,
3.83. 2b′: colorless oil; [R]D ) +141.3 (c ) 1.0, CHCl3); IR (neat)
1667 cm-1 1H NMR (CDCl3) δ 7.56 (1H, dd, J ) 1.5, 8.0 Hz),
;
7.38 (1H, dt, J ) 1.8, 8.0 Hz), 7.23-7.29 (6H, m), 7.17 (1H, dd,
J ) 1.5, 8.0 Hz), 6.02 (1H, dddd, J ) 5.3, 8.2, 9.9, 17.2 Hz), 5.18
(1H, d, J ) 9.9 Hz), 5.09 (1H, dd, J ) 1.0, 17.2 Hz), 5.06 (1H, s),
5.03 (1H, tdd, J ) 1.0, 5.3, 14.0 Hz), 4.57 (1H, d, J ) 7.0 Hz),
4.50 (1H, d, J ) 7.0 Hz), 3.29 (3H, s), 3.26 (1H, dd, J ) 8.2, 14.0
Hz), 1.04 (9H, s); 13C NMR (CDCl3) δ 169.2, 146.9, 137.7, 135.4,
132.6, 131.7, 130.6, 129.2, 128.7, 128.7, 128.2, 126.4, 119.1, 94.7,
75.0, 55.7, 54.7, 35.9, 31.9; MS (m/z) 390 (M+ + Na). Anal. Calcd
for C23H29NO3: C, 75.17; H, 7.95; N, 3.81. Found: C, 74.99; H,
7.75; N, 3.85.
cm-1 1H NMR (CDCl3) δ 7.58 (1H, dd, J ) 1.2, 7.9 Hz), 7.33
;
(1H, dt, J ) 1.2, 7.3 Hz), 7.17 (1H, dt, J ) 1.2, 7.3 Hz), 6.93
(1H, dd, J ) 1.2, 7.9 Hz), 5.97 (1H, dddd, J ) 5.0, 8.8, 10.0, 17.0
Hz), 5.16 (1H, d, J ) 10.0 Hz), 5.08 (1H, dd, J ) 0.6, 17.0 Hz),
4.98 (1H, dd, J ) 5.0, 14.1 Hz), 4.60 (1H, d, J ) 7.0 Hz), 4.52
(1H, d, J ) 7.0 Hz), 4.04 (1H, q, J ) 6.5 Hz), 3.32 (1H, dd, J )
(11) N,N-Dialkyl 2,6-disubstituted aromatic amides are also known
to exist as stable nonbiaryl atropisomeric compounds at room temper-
ature. Recently, the stereoselective synthesis of optically active forms
of these compounds has been reported by several groups. (a) Th-
ayumanavan, S.; Beak, P.; Curran, D. P.; Tetrahedron Lett. 1996, 37,
2899. (b) Clayden, J .; Lai, L. W. Angew. Chem., Int. Ed. 1999, 38, 2556.
(c) Clayden, J .; J ohnson, P.; Pink, J . H. J . Chem. Soc., Perkin Trans.
1 2001, 371. (d) Clayden, J .; Mitjans, D.; Youssef, L. H. J . Am. Chem.
Soc. 2002, 124, 5266. (e) Rios, R.; J imeno, C.; Carrol, P. J .; Walsh, P.
J . J . Am. Chem. Soc. 2002, 124, 10272.
Su p p or tin g In for m a tion Ava ila ble: Experimental pro-
cedures for the preparation and characterization data of 1a ,
1b, 3a , 3b, and 4b. This material is available free of charge
J O035305L
J . Org. Chem, Vol. 68, No. 25, 2003 9853