LETTER
Stereoselective Approach to Polyoxin and Nikkomycin Antibiotics
1309
Tetrahedron Lett. 1996, 37, 163. (k) Trost, B. M.; Shi, Z. J.
Am. Chem. Soc. 1996, 118, 3037. (l) Kato, K.; Chen, C. Y.;
Akita, H. Synthesis 1998, 1527. (m) Gethin, D. M.;
Simpkins, N. S. Tetrahedron 1997, 53, 14417. (n) Ghosh,
A. K.; Wang, Y. J. Org. Chem. 1998, 63, 6735. (o) Ghosh,
A. K.; Wang, Y. J. Org. Chem. 1999, 64, 2789.
(p) Dehoux, C.; Gorrichon, L.; Baltas, M. Eur. J. Org. Chem.
2001, 1105. (q) Mita, N.; Tamura, O.; Isgibashi, H.;
Sakamoto, M. Org. Lett. 2002, 4, 1111.
yield. The olefin was then converted to hydroxy ester 7
via ozonolysis under basic conditions in moderate yield.15
By utilizing the route depicted in Scheme 4, the overall
yield of 4 to 7 was increased by a factor of two. Hydroxy-
ester 7 could be then be directly converted to azide 9 in
80% yield via a Mitsunobu reaction with hydrazoic acid.
In conclusion, we have developed an efficient synthesis of
the polyoxin scaffold 9 from ribose, which proceeds with
minimal purification in 22% overall yield (8 steps, aver-
age yield/step of 83.5%) and is amenable to multi-gram
scale. Notable features include the use of our newly devel-
oped IBX oxidation protocol and a highly diastereoselec-
tive zinc-mediated asymmetric acetylide addition.7,10
Current efforts are focused on the synthesis and biological
evaluation of polyoxin analogs and results will be report-
ed in due course.
(5) (a) Early studies involved the use of uridine as a starting
material, with the intention of utilizing an asymmetric Ugi
condensation or an asymmetric Strecker reaction as the key
operation. Unfortunately, the required imine derivatives
were either unstable or resulted in poor selectivity upon
nucleophilic addition. In the ribose series, the key
stereocenter could be formed using a chiral auxiliary-
mediated Strecker reaction, but the resulting amino-nitrile
could not be hydrolyzed. (b) For the asymmetric Ugi
reaction, see: Kunz, H.; Pfrengle, W.; Sager, W.
Tetrahedron Lett. 1989, 30, 4109. (c) For a catalytic
asymmetric Strecker reaction, see: Sigman, M. S.; Vachal,
P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2000, 39, 1279.
(d) For an auxiliary-based Strecker reaction, see: Davis, F.
A.; Portonovo, P. S.; Reddy, R. E.; Chiu, Y.-H. J. Org.
Chem. 1996, 61, 440.
Acknowledgment
The authors gratefully acknowledge the National Institutes of
Health for support of this research (NIGMS-GM60875; NIGMS-
GM07240 training grant support for JDM) and the National Science
Foundation for support of the departmental NMR facilities (CHE-
9709183). The authors thank Judy Mitchell for helpful discussions.
(6) For a study of the addition of allylmetal reagents to aldehyde
3, see: Danishefsky, S. J.; Deninno, M. P.; Phillips, G. B.;
Zelle, R. E.; Lartey, P. A. Tetrahedron 1986, 42, 2.
(7) (a) Frantz, D. E.; Fassler, R.; Tomooka, C. S.; Carreira, E.
M. Acc. Chem. Res. 2000, 33, 373. (b) Frantz, D. E.;
Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122,
1806. (c) Boyall, D.; Frantz, D. E.; Carreira, E. M. Org. Lett.
2002, 4, 2605. (d) El-Sayed, E.; Anand, N. K.; Carreira, E.
M. Org. Lett. 2001, 3, 3017.
References
(1) Chang, R.; Yeager, A. R.; Finney, N. S. Org. Biomol. Chem.
2003, 1, 39.
(2) Isono, K.; Suzuki, S. Heterocycles 1979, 13, 333.
(3) (a) For a review, see: Zhang, D.; Miller, M. Current Pharm.
Des. 1999, 5, 73. (b) Isono, K.; Azuma, T.; Suzuki, S. Chem.
Pharm. Bull. 1971, 19, 505. (c) Azuma, T.; Isono, K.; Crain,
P. F.; McCloskey, J. A. J. Chem. Soc. Chem. Commun. 1977,
159. (d) Naider, F.; Shenbagamurthi, P.; Steinfeld, A. S.;
Smith, H. A.; Boney, C.; Becker, J. M. Antimicrob. Agents
Chemother. 1983, 24, 787. (e) Shenbagamurthi, P.; Smith,
H. A.; Becker, J. M.; Steinfeld, A.; Naider, F. J. Med. Chem.
1983, 26, 1518. (f) Emmer, G.; Ryder, N. S.; Grassberger,
M. A. J. Med. Chem. 1985, 28, 278. (g) Shenbagamurthi,
P.; Smith, H. A.; Becker, J. M.; Steinfeld, A.; Naider, F. J.
Med. Chem. 1985, 29, 802. (h) Khare, R. K.; Becker, J. M.;
Naider, F. J. Med. Chem. 1988, 31, 650. (i) Krainer, E.;
Becker, J. M.; Naider, F. J. Med. Chem. 1991, 34, 174.
(j) Cooper, A. B.; Desai, J.; Lovey, R. G.; Saksena, A. K.;
Girijavallabhan, V. M.; Ganguly, A. K.; Loebenberg, D.;
Parmegiani, R.; Cacciapuoti, A. Bioorg. Med. Chem. Lett.
1993, 3, 1079. (k) Obi, K.; Uda, J.; Iwase, K.; Sugimoto, O.;
Ebisu, H.; Matsuda, A. Bioorg. Med. Chem. Lett. 2000, 10,
1451. (l) Suda, A.; Ohta, A.; Sudoh, M.; Tsukuda, T.;
Shimma, N. Heterocycles 2001, 55, 1023.
(4) (a) Ohrui, H.; Kuzahara, H.; Emoto, S. Tetrahedron Lett.
1971, 4267. (b) Damodaran, N. P.; Jones, G. H.; Moffatt, J.
G. J. Am. Chem. Soc. 1971, 93, 3812. (c) Tabusa, F.;
Yamada, T.; Suzuki, K.; Mukaiyama, T. Chem. Lett. 1984,
405. (d) Garner, P.; Park, J. M. J. Org. Chem. 1990, 55,
3772. (e) Barrett, A. G. M.; Lebold, S. A. J. Org. Chem.
1990, 55, 3853. (f) Auberson, Y.; Vogel, P. Tetrahedron
1990, 46, 7019. (g) Chen, A.; Thomas, E. J.; Wilson, P. D. J.
Chem. Soc. Perkin Trans. 1 1999, 3305. (h) Chida, N.;
Koizumi, K.; Kitada, Y.; Yokoyama, C.; Ogawa, S. J. Chem.
Soc., Chem. Commun. 1994, 111. (i) Dondoni, A.;Santiago,
F.; Junquera, F.; Merchan, F. L.; Merino, P.; Tejero, T. J.
Org. Chem. 1997, 62, 5497. (j) Evina, C. M.; Guillerm, G.
(8) Attempted use of the zinc acetylide addition with a uridine-
derived aldehyde was thwarted by a complete lack of
reactivity with a variety of alkynes.
(9) Alcohol 2 was prepared on a 30-gram scale in 79% yield by
a modification of the procedure found in: Leonard, N. J.;
Carraway, K. L. J. Heterocycl. Chem. 1966, 3, 485.
(10) More, J. D.; Finney, N. S. Org. Lett. 2002, 4, 3001.
(11) Other methods of oxidation investigated (e.g. PCC, Swern,
CrO3/pyridine, TPAP, IBX/DMSO, Dess–Martin) proved to
be much less reliable for this transformation, being difficult
to reproduce and providing aldehyde of lower purity than
with IBX.
(12) Experimental Details for the Synthesis of Compound 4:
The alcohol 2 (6.2 g, 30.18 mmol, 1.0 equiv) was dissolved
in 250 mL CH3CN and IBX (16.9 g, 60.35 mmol, 2.0 equiv)
was added. The flask was fitted with a reflux condenser and
the suspension was immersed in an oil bath heated to 80 °C
with vigorous stirring. After 75 min, an aliquot was removed
and analyzed by 1H NMR, which indicated consumption of
starting material and clean conversion to product. The
reaction was stopped, cooled to room temperature and
filtered, washing the flask and filter thoroughly with EtOAc.
The combined filtrate and washings were combined and
concentrated to yield a white, glassy semi-solid, which was
used without further purification in the next step. 1H NMR
(400 MHz, CDCl3) d 9.56 (s, 1 H), 5.08 (s, 1 H), 5.04 (d,
1 H, J = 8 Hz), 4.48 (d, 1 H, J = 8 Hz), 4.46 (s, 1 H), 3.44 (s,
3 H), 1.48 (s, 3 H), 1.32 (s, 3 H). An oven-dried 1 L round
bottom flask was cooled under N2, then charged with (–)-N-
methyl ephedrine (11.9 g, 66.39 mmol, 2.2 equiv) and
Zn(OTf)2 (23.0 g, 63.37 mmol, 2.1 equiv), and purged with
N2. Freshly distilled NEt3 (8.9 mL, 63.37 mmol, 2.1 equiv)
was added via syringe, followed by 250 mL anhydrous
Synlett 2003, No. 9, 1307–1310 ISSN 1234-567-89 © Thieme Stuttgart · New York