K. Burgess, M. B. Hall et al.
[18] M. T. Powell, D.-R. Hou, M. C. Perry, X. Cui, K. Burgess, J. Am.
Chem. Soc. 2001, 123, 8878–8879.
Computational Methods
[19] M. C. Perry, X. Cui, M. T. Powell, D.-R. Hou, J. H. Reibenspies, K.
Burgess, J. Am. Chem. Soc. 2003, 125, 113–123; X. Cui, K. Burgess,
Chem. Rev., in press.
[20] H. Muramatsu, H. Kawano, Y. Ishii, M. Saburi, Y. Uchida, J. Chem.
Soc. Chem. Commun. 1989, 769–770.
[21] V. Beghetto, U. Matteoli, A. Serivanti, Chem. Commun. 2000, 155–
156.
[22] M. J. Burk, K. M. Bedingfield, W. F. Kiesman, J. G. Allen, Tetrahe-
dron Lett. 1999, 40, 3093–3096.
Briefly, with respect to the computational approach, we showed that
there was good agreement with data generated using the B3LYP and
PBE methods for arylalkene hydrogenation mediated by catalyst C.[36]
That was extremely important because a comprehensive set of B3LYP
calculations for the complete structures of the catalyst C and of the
alkene substrate would have been far too computationally expensive
(even using our state-of-the-art facilities), but they are practical using the
PBE method.
Methods used in the computational experiments described here build
upon the previous approach described above. Thus all the calculations
were carried out using the Gaussian 03[37] implementation of PBE[38] den-
sity functional theories, which for these systems produces results similar
to B3LYP.[39,40] The basis sets used were LANL2DZ with ECP for Ir[41,42]
and D95v for all other elements.[43] This switch from B3LYP to PBE was
made because density-fitting functions[44,45] can be used with PBE and
make these calculations much faster; hence the problem was computa-
tionally accessible. Throughout, intermediates were modeled but not the
transition states. All structures were fully optimized, and analytical fre-
quency calculations were performed at the same theoretical level on each
structure to ensure a minimum was achieved. Zero-point energies and
thermodynamic functions were computed for 298.15 K and 1 atm. Only
the cation of the complex was modeled.
[23] X. Cui, K. Burgess, J. Am. Chem. Soc. 2003, 125, 14212–14213.
[24] O. Roy, A. Riahi, F. Henin, J. Muzart, Eur. J. Org. Chem. 2002,
3986–3994.
[25] N. D. Berova, B. J. Kurtev, Tetrahedron 1969, 25, 2301–2311.
[26] H. H. Richmond, E. J. Underhill, A. G. Brook, G. F. Wright, J. Am.
Chem. Soc. 1947, 69, 937–939.
[27] H.-H. Wang, A. L. Casalnuovo, B. J. Johnson, A. M. Mueting, L. H.
Pignolet, Inorg. Chem. 1988, 27, 325–331.
[28] H.-H. Wang, L. H. Pignolet, Inorg. Chem. 1980, 19, 1470–1480.
[29] S. P. Smidt, A. Pfaltz, Organometallics 2003, 22, 1000–1009.
[30] C. Mazet, S. P. Smidt, M. Meuwly, A. Pfaltz, J. Am. Chem. Soc.
2004, 126, 14176–14181.
[31] Y. Sun, R. N. Landau, J. Wang, C. LeBlond, D. G. Blackmond, J.
Am. Chem. Soc. 1996, 118, 1348–1353.
[32] Y. Sun, J. Wang, C. LeBlond, R. A. Reamer, J. Laquidara, J. R.
Sowa, Jr., D. G. Blackmond, J. Organomet. Chem. 1997, 548, 65–72.
[33] S. P. Smidt, N. Zimmermann, M. Studer, A. Pfaltz, Chem. Eur. J.
2004, 10, 4685–4693.
[34] B. F. M. Kimmich, E. Somsook, C. R. Landis, J. Am. Chem. Soc.
1998, 120, 10115–10125.
[35] R. H. Crabtree, H. Felkin, G. E. Morris, J. Chem. Soc. Chem.
Commun. 1976, 716–717.
[36] Y. Fan, X. Cui, K. Burgess, M. B. Hall, J. Am. Chem. Soc. 2004, 126,
16688–16689.
[37] Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Montgomery J. A.
Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuki, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.
Farkas, D. K. Malick, A. D. Rabuck, B. B. Stefano, G. Liu, A. Lia-
shenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
Al-M. A. Laham, C. Y. Peng, A. Nanyakkara, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A.
Pople, Gaussian, Inc.: Willingford, CT, 2004.
Acknowledgements
Financial support for this work was provided by The National Science
Foundation (CHE-0456449, 98-00184, DMR 02-16275, and 05-18074) and
The Robert Welch Foundation (A1121 and A0648). We thank Johnson
Matthey plc for help with some precious metals, Dr Shane Tichy and the
TAMU/LBMS-Applications Laboratory for MS support, and NMR Lab-
oratory at Texas A&M University, supported by a grant from the Nation-
al Science Foundation (DBI-9970232) and the Texas A&M University
System.
[1] R. B. Grossman, R. A. Doyle, S. L. Buchwald, Organometallics 1991,
10, 1501–1505.
[2] R. D. Broene, S. L. Buchwald, J. Am. Chem. Soc. 1993, 115, 12569–
12570.
[3] M. V. Troutman, D. H. Appella, S. L. Buchwald, J. Am. Chem. Soc.
1999, 121, 4916–4917.
[4] R. Crabtree, Acc. Chem. Res. 1979, 12, 331–337.
[5] A. Pfaltz, Synlett 1999, 835–842.
[6] T. Bunlaksananusorn, K. Polborn, P. Knochel, Angew. Chem. 2003,
115, 4071–4073; Angew. Chem. Int. Ed. 2003, 42, 3941–3943.
[7] G. Helmchen, A. Pfaltz, Acc. Chem. Res. 2000, 33, 336–345.
[8] A. Lightfoot, P. Schnider, A. Pfaltz, Angew. Chem. 1998, 110, 3047–
3050; Angew. Chem. Int. Ed. 1998, 37, 2897–2899.
[38] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77,
3865–3868.
[39] A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
[40] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
[41] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283.
[42] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 299–310.
[43] T. H. Dunning, P. J. Hay in Modern Theoretical Chemistry, Vol. 3
(Ed.: H. F. Schaefer III), New York, 1976.
[9] D. G. Blackmond, A. Lightfoot, A. Pfaltz, T. Rosner, P. Schnider, N.
Zimmermann, Chirality 2000, 12, 442–449.
[10] J. Blankenstein, A. Pfaltz, Angew. Chem. 2001, 113, 4577–4579;
Angew. Chem. Int. Ed. 2001, 40, 4445–4447.
[11] D. Drago, P. S. Pregosin, A. Pfaltz, Chem. Commun. 2002, 286–287.
[12] F. Menges, A. Pfaltz, Adv. Synth. Catal. 2002, 344, 40–44.
[13] F. Menges, M. Neuburger, A. Pfaltz, Org. Lett. 2002, 4, 4713–4716.
[14] P. G. Cozzi, F. Menges, S. Kaiser, Synlett 2003, 833–836.
[15] G. Xu, S. Gilbertson, Tetrahedron Lett. 2003, 44, 953–955.
[16] W. Tang, W. Wang, X. Zhang, Angew. Chem. 2003, 115, 973–976;
Angew. Chem. Int. Ed. 2003, 42, 943–946.
[44] B. I. Dunlap, J. Mol. Struct. 2000, 529, 37–40.
[45] B. I. Dunlap, J. Chem. Phys. 1983, 78, 3140–3142.
[17] D.-R. Hou, J. H. Reibenspies, T. J. Colacot, K. Burgess, Chem. Eur.
J. 2001, 7, 5391–5400.
Received: July 2, 2005
Published online: September 15, 2005
6868
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 6859 – 6868