Page 11 of 14
1
Journal of the American Chemical Society
(8) Gentry, E. C.; Knowles, R. R. Synthetic Applications of
Proton-Coupled Electron Transfer. Acc. Chem. Res. 2016, 49,
1546.
Acknowledgement
2
3
4
5
We acknowledge the U.S. NIH (2R01GM50422 to J.M.M.)
for funding this work. We thank Zachary Goldsmith for
computational advice.
(9) Keough, J. M.; Jenson, D. L.; Zuniga, A. N.; Barry, B. A.
Proton Coupled Electron Transfer and Redox-Active Tyrosine Z
in the Photosynthetic Oxygen-Evolving Complex. J. Am. Chem.
Soc. 2011, 133, 11084.
6
(10) (a) Markle, T. F.; Rhile, I. J.; DiPasquale, A. G.; Mayer, J.
M. Probing concerted proton–electron transfer in phenol–
imidazoles. Proc. Natl. Acad. Sci. 2008, 105, 8185; (b) Markle,
T. F.; Mayer, J. M. Concerted Proton–Electron Transfer in
Pyridylphenols: The Importance of the Hydrogen Bond. Angew.
Chem. Int. Ed. 2008, 47, 738; (c) Markle, T. F.; Rhile, I. J.;
Mayer, J. M. Kinetic effects of increased proton transfer distance
on proton-coupled oxidations of phenol-amines. J. Am. Chem.
Soc. 2011, 133, 17341; (d) Morris, W. D.; Mayer, J. M.
Separating proton and electron transfer effects in three-
component concerted proton-coupled electron transfer reactions.
J. Am. Chem. Soc. 2017, 139, 10312; (e) Parada, G. A.; Glover,
S. D.; Orthaber, A.; Hammarström, L.; Ott, S. Hydrogen Bonded
Phenol-Quinolines with Highly Controlled Proton-Transfer
Coordinate. Eur. J. Org. Chem. 2016, 2016, 3365; (f) Wenger, O.
S. Proton-coupled electron transfer with photoexcited
ruthenium(II), rhenium(I), and iridium(III) complexes. Coord.
Chem. Rev. 2015, 282–283, 150.
7
8
9
References
(1) (a) Hartwig, J. F. Evolution of C–H bond functionalization
from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2;
(b) Labinger, J. A.; Bercaw, J. E. Understanding and exploiting
C–H bond activation. Nature 2002, 417, 507; (c) He, J.; Wasa,
M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-Catalyzed
Transformations of Alkyl C–H Bonds. Chem. Rev. 2017, 117,
8754; (d) Crabtree, R. H. Alkane C–H activation and
functionalization with homogeneous transition metal catalysts: A
century of progress—A new millennium in prospect. J. Chem.
Soc., Dalton Trans. 2001, 2437; (e) Davies, H. M. L.; Morton, D.
Recent Advances in C–H Functionalization. J. Org. Chem. 2016,
81, 343; (f) Goldberg, K. I.; Goldman, A. S. Activation and
functionalization of CH bonds; American Chemical Society
Washington, DC, 2004; Vol. 885; (g) Shul'pin, G. B. Selectivity
enhancement in functionalization of C–H bonds: A review.
Organic & biomolecular chemistry 2010, 8, 4217.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) (a) Kochi, J. K. Free radicals; Wiley, 1973; Vol. 2; (b)
Perkins, M. Free radical chemistry; Ellis Horwood, New York,
1994; (c) Burton, G.; Ingold, K. U. Vitamin E: application of the
principles of physical organic chemistry to the exploration of its
structure and function. Acc. Chem. Res. 1986, 19, 194; (d)
Gutteridge, J. M.; Halliwell, B. The measurement and mechanism
of lipid peroxidation in biological systems. Trends Biochem. Sci
1990, 15, 129; (e) Olah, G. A.; Prakash, G. S. Hydrocarbon
Chemistry; John Wiley & Sons, 1995.
(11) (a) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles,
R. R. Catalytic alkylation of remote C–H bonds enabled by
proton-coupled electron transfer. Nature 2016, 539, 268; (b)
Musacchio, A. J.; Lainhart, B. C.; Zhang, X.; Naguib, S. G.;
Sherwood, T. C.; Knowles, R. R. Catalytic intermolecular
hydroaminations of unactivated olefins with secondary alkyl
amines. Science 2017, 355, 727; (c) Zhu, Q.; Graff, D. E.;
Knowles,
R.
R.
Intermolecular
Anti-Markovnikov
Hydroamination of Unactivated Alkenes with Sulfonamides
Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc.
2018, 140, 741; (d) Chu, J. C. K.; Rovis, T. Amide-directed
photoredox-catalysed C–C bond formation at unactivated sp3 C–
H bonds. Nature 2016, 539, 272; (e) Jia, J.; Ho, Y. A.; Bülow, R.
F.; Rueping, M. Brønsted Base Assisted Photoredox Catalysis:
Proton Coupled Electron Transfer for Remote C−C Bond
Formation via Amidyl Radicals. Chem. – Eur. J. 2018, 24, 14054;
(f) Miller, D. C.; Tarantino, K. T.; Knowles, R. R. Proton-
Coupled Electron Transfer in Organic Synthesis: Fundamentals,
Applications, and Opportunities. Top. Curr. Chem. 2016, 374, 1.
(3) Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M.
A Continuum of Proton-Coupled Electron Transfer Reactivity.
Acc. Chem. Res. 2018, 51, 2391.
(4) (a) Snider, B. B. Manganese(III)-Based Oxidative Free-
Radical Cyclizations. Chem. Rev. 1996, 96, 339; (b) Mayer, J. M.
Hydrogen
complexes:ꢀunderstanding the analogy with organic radical
reactions. Acc. Chem. Res. 1998, 31, 441.
atom
abstraction
by
metal−oxo
(5) (a) Reece, S. Y.; Nocera, D. G. Proton-Coupled Electron
Transfer in Biology: Results from Synergistic Studies in Natural
and Model Systems. Annu. Rev. Biochem 2009, 78, 673; (b)
Jasniewski, A. J.; Que, L. Dioxygen Activation by Nonheme
Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent
Intermediates, and Related Model Complexes. Chem. Rev. 2018,
118, 2554; (c) Solomon, E. I.; Heppner, D. E.; Johnston, E. M.;
Ginsbach, J. W.; Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.;
Kjaergaard, C. H.; Hadt, R. G.; Tian, L. Copper Active Sites in
Biology. Chem. Rev. 2014, 114, 3659.
(12) Markle, T. F.; Darcy, J. W.; Mayer, J. M. A new strategy to
efficiently cleave and form C–H bonds using proton-coupled
electron transfer. Sci. Adv. 2018, 4, eaat5776.
(13) Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical aspects
of physical organic chemistry; Wiley, 1992.
(14) (a) Hanhart, W.; Ingold, C. K. CXXXIX.—The nature of
the alternating effect in carbon chains. Part XVIII. Mechanism of
exhaustive methylation and its relation to anomalous hydrolysis.
J. Chem. Soc. (Resumed) 1927, 997; (b) Letsinger, R. L.;
Schnizer, A. W.; Bobko, E. Orientation in the Cleavage of 2-
Methoxyoctane by Organoalkali Metal Compounds. J. Am.
Chem. Soc. 1951, 73, 5708; (c) Cram, D. J.; Greene, F. D.; Depuy,
C. H. Studies in Stereochemistry. XXV. Eclipsing Effects in the
E2 Reaction. J. Am. Chem. Soc. 1956, 78, 790; (d) Saunders, W.
H.; Williams, R. A. Mechanisms of Elimination Reactions. II.
Rates of Elimination from Some Substituted 2-Phenylethyl
Bromides and 2-Phenylethyldimethylsulfonium Bromides. J. Am.
Chem. Soc. 1957, 79, 3712; (e) Saunders, W. H.; Edison, D. H.
Mechanisms of Elimination Reactions. IV. Deuterium Isotope
Effects in E2 Reactions of Some 2-Phenylethyl Derivatives. J.
Am. Chem. Soc. 1960, 82, 138; (f) Bunnett, J. F. The Mechanism
(6) (a) Rittle, J.; Green, M. T. Cytochrome P450 Compound I:
Capture, Characterization, and C-H Bond Activation Kinetics.
Science 2010, 330, 933; (b) Yosca, T. H.; Rittle, J.; Krest, C. M.;
Onderko, E. L.; Silakov, A.; Calixto, J. C.; Behan, R. K.; Green,
M. T. Iron(IV)hydroxide pKa and the Role of Thiolate Ligation
in C–H Bond Activation by Cytochrome P450. Science 2013,
342, 825; (c) Groves, J. T. Using push to get pull. Nat. Chem.
2014, 6, 89.
(7) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry
of Proton-Coupled Electron Transfer Reagents and its
Implications. Chem. Rev. 2010, 110, 6961.
11
ACS Paragon Plus Environment