Functionalized Spirocyclic Cyclopentanones
SCHEME 1. Sem ip in a col-Ba sed Ap p r oa ch to
1-Aza sp ir ocycles
Aware of these reports and that nitrogen is less electro-
negative than oxygen, we selected cyclobutanols as initial
substrates. Cyclobutanols have been demonstrated to
undergo facile ring expansion reactions, presumably due
to both the relief of ring strain upon the formation of a
five-membered ring from a four-membered ring as well
as the formation of a carbon-oxygen π bond.10a,11 This
report will document the successful formation of func-
tionalized azaspirocyclic cyclopentanones, initiated by
either Bronsted acids or N-bromosuccinimide (NBS), an
electrophilic bromine source.
Resu lts a n d Discu ssion
Con str u ction of Su bstr a tes. The reaction between
a “2-metallo-N-protected-2-piperidene” and cyclobutanone
appeared to be the most straightforward method of
generating structures such as A (eq 1). The p-toluene-
sulfonyl group was selected to be the protecting group
on nitrogen because of its perceived compatibility with
organometallic compounds, Bronsted acids and Lewis
acids. Our attempts to form the desired organometallic
species using either direct lithiation or metal-halide
exchange reaction were unsuccessful. Following the work
of Hiemstra and Speckamp, we considered forming these
nucleophilic organometallic compounds by transmetala-
tion of an appropriate vinylstannane.12
example, simple Bronsted acids can be used to promote
these reactions.
Examples of hydroxy-imine rearrangements are
present in the chemical literature; despite their synthetic
potential, the promise of these processes has yet to be
fully realized.8 A marked exception is the transformations
of 3-hydroxyindolines to spiroindoxyl ring systems as in
the construction of austamide and brevianamide A.8i,9
However, we could uncover no examples of this type of
process used to form spirocyclic ring systems such as
those present in the natural products described in Figure
1. Relevant studies on “hydroxy-oxonium” semipinacol
reactions forming oxaspirocycles had been initiated and
examined by the Paquette group throughout the 1990s.10
A key finding in their assorted examinations was that
the efficiency of the semipinacol process was affected by
the substituents (either inductively withdrawing or
donating) on the ring bearing the oxacarbenium ion.
The vinylstannanes were generated using a Pd(0)
catalyzed coupling of a lactam-derived enol triflate and
hexamethyldistannane.12,13 The lactams14 (1a -g) were
(4) Halichlorine. Isolation papers: (a) Kuramoto, M.; Tong, C.;
Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Tetrahedron Lett.
1996, 37, 3867. (b) Arimoto, H.; Hayakawa, I.; Kuramoto, M.; Uemura,
D. Tetrahedron Lett. 1998, 39, 861. (c) Chou, T.; Kuramoto, M.; Otani,
Y. Shikano, M.; Yazawa, K.; Uemura, D. Tetrahedron Lett. 1996, 37,
3871. (d) Arimoto, H.; Asano, S.; Uemura, D. Tetrahedron Lett. 1999,
40, 3583. (e) Clive, D. L. J .; Yeh, V. S. C. Tetrahedron Lett. 1999, 40,
8503. (f) Koviach, J . L.; Forsyth, C. J . Tetrahedron Lett. 1999, 40, 8529.
(g) Lee, S.; Zhao, Z. Org. Lett. 1999, 1, 681. (h) Lee, S.; Zhao, Z.
Tetrahedron Lett. 1999, 40, 7921. (i) Trauner, D.; Schwarz, J . B.;
Danishefsky, S. J . Angew. Chem., Int. Ed. 1999, 38, 3542. (j) Trauner,
D.; Danishefsky, S. J . Tetrahedron Lett. 1999, 40, 6513. (k) Trauner,
D.; Churchill, D. G.; Danishefsky, S. J . Helv. Chim. Acta 2000, 83,
2344. (l) Wright, D. L.; Shulte, J . P.; Page, M. Org. Lett. 2000, 2, 1847.
(m) White, J . D.; Blakemore, P. R.; Korf, E. A.; Yokochi, A. F. T. Org.
Lett. 2001, 3, 313. (n) Shindo. M.; Fukuda, Y.; Shishido, K. Tetrahedron
Lett. 2000, 41, 929. (o) Itoh, M.; Kuwahara, J .; Itoh, K.; Fukuda, Y.;
Kohya, M.; Shindo, M.; Shishido, K. Bioorg. Med. Chem. Lett. 2002,
12, 2069. (p) Carson, M. W.; Kim, G.; Danishefsky, S. J . Angew. Chem.,
Int. Ed. 2001, 40, 4453. (q) Carson, M. W.; Kim, G.; Hentemann, M.
F.; Trauner, D.; Danishefsky, S. J . Angew. Chem., Int. Ed. 2001, 40,
4450. (r) Hayakawa, I.; Arimoto, H.; Uemura, D. Heterocycles 2003,
59, 441. (s) Takasu, K.; Ohsato, H.; Ihara, M. Org. Lett. 2003, 5, 3017.
(t) Matsumura, Y.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2003, 5, 3249.
(5) For some other methods to generate 1-azaspirocyclic ring
systems, see: (a) Wardrop, D. J .; Burge, M. S.; Zhang, W.; Ortiz, J . A.
Tetrahedron Lett. 2003, 44, 2587. (b) Planas, L.; Perard-Viret, J ., Royer,
J .; Selkti, M.; Thomas, A. Synlett 2002, 1629. (c) Kibayashi, C.;
Yamazaki, N.; Ito, T. Synlett 2001, 1506. (d) Braun, N. A.; Ousmer,
M.; Bray, J . D.; Bouchu, D.; Peters, K.; Peters, E.-M.; Ciufolini, M. A.
J . Org. Chem. 2000, 65, 4397. (e) For a review covering spirocycle
synthesis: Sannigrahi, M. Tetrahedron 1999, 55, 9007.
(8) (a) Stevens, C. L.; Elliott, R. D.; Winch, B. L. J . Am. Chem. Soc.
1963, 85, 1464. (b) Stevens, C. L.; Thuillier, A.; Daniher, F. A. J . Org.
Chem. 1965, 30, 2962. (c) Stevens, C. L.; Klundt, I. L.; Munk, M. E.;
Pillai, M. D. J . Org. Chem. 1965, 30, 2967. (d) Morrow, D. F.; Brokke,
M. E.; Moersch, G. W.; Butler, M. E.; Klein, C. F.; Neuklis, W. A.;
Huang, E. C. Y. J . Org. Chem. 1965, 30, 212. (e) Stevens, C. L.; Ash,
A. B.; Thuillier, A.; Amin, J . H.; Balys, A.; Dennis, W. E.; Dickerson,
J . P.; Glinski, R. P.; Hanson, H. L.; Pillai, M. D.; Stoddard, J . W. J .
Org. Chem. 1966, 31, 2593. (f) Stevens, C. L.; Thuillier, A.; Taylor, K.
G.; Daniher, F. A.; Dickerson, J . P.; Hansom, H. T.; Nielsen, N. A.;
Tikotkar, N. A.; Weier, R. M. J . Org. Chem. 1966, 31, 2601. (g) Stevens,
C. L.; Hanson, H. T.; Taylor, K. G. J . Am. Chem. Soc. 1966, 88, 2769.
(h) Yamada, S.-I.; Mizuno, H.; Terashima, S. J . Chem. Soc., Chem.
Commun. 1967, 1058. (i) Hutchison, A. J .; Kishi, Y. J . Am. Chem. Soc.
1979, 101, 6786. (j) Woolf, T.; Trevor, A.; Baillie, T.; Castagnoli, N.,
J r. J . Org. Chem. 1984, 49, 3305. (k) Vate`le, J .-M.; Dumas, D.; Gore´,
J . Tetrahedron Lett. 1990, 31, 2277. (l) Compain, P.; Gore´, J .; Vate`le,
J .-M. Tetrahedron Lett. 1995, 36, 4059. (m) Compain, P.; Gore´, J .;
Vate`le, J .-M. Tetrahedron Lett. 1995, 36, 4063. (n) Compain, P.; Gore´,
J .; Vate`le, J .-M. Tetrahedron 1996, 52, 6647. (o) Devaux, J .-M.; Gore´,
J .; Vate`le, J .-M. Tetrahedron: Asymmetry 1998, 9, 1619. (p) Bisel, P.;
Lauktein, G.; Weckert, E.; Frahm, A. W. Tetrahedron: Asymmetry
1998, 9, 4027. (q) Reference 2e.
(9) Williams, R. M.; Kwast, E.; Coffman, H.; Glinka, T. J . Am. Chem.
Soc. 1989, 111, 3064.
(10) (a) Paquette, L. A.; Lanter, J . C.; J ohnston, J . N. J . Org. Chem.
1997, 62, 1702. (b) Paquette, L. A.; Kinney, M. A.; Dullweber, U. J .
Org. Chem. 1997, 62, 1713. (c) Paquette, L. A.; Lanter, J . C.; Wang,
H.-L. J . Org. Chem. 1996, 61, 1119. (d) Paquette, L. A.; Wang, H.-L.
Tetrahedron Lett. 1995, 36, 6005. (e) Lord, M. D.; Negri, J . T.; Paquette,
L. A. J . Org. Chem. 1995, 60, 191. (f) Paquette, L. A.; Dullweber, U.;
Cowgill, L. D. Tetrahedron Lett. 1993, 34, 8019. (g) Paquette, L. A.;
Lord, M. D.; Negri, J . T. Tetrahedron Lett. 1993, 34, 5693. (h) Paquette,
L. A.; Andrews, J . F.; Vanucci, C.; Lawhorn, D. E.; Negri, J . T.; Rogers,
R. D. J . Org. Chem. 1992, 57, 3956. (i) Paquette, L. A.; Negri, J . T.;
Rogers, R. D. J . Org. Chem. 1992, 57, 3947. (j) Paquette, L. A.;
Lawhorn, D. E.; Teleha, C. A. Heterocycles 1990, 30, 765.
(6) (a) Fenster, M. D. B.; Patrick, B. O.; Dake, G. R. Org. Lett. 2001,
3, 2109. (b) Hurley, P. B.; Dake, G. R. Synlett 2003, 2131.
(7) (a) Eom, K. D.; Raman, J . V.; Kim, H.; Cha, J . K. J . Am. Chem.
Soc. 2003, 125, 5415. (b) Li, J .; J eong, S.; Esser, L.; Harran, P. G.
Angew. Chem., Int. Ed. 2001, 40, 4765. (c) Overman, L. E.; Pennington,
L. D. J . Org. Chem. 2003, 68, 7143. For reviews on the pinacol reaction,
see: (d) Rickborn, B. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 3, p 721. (e)
Coveney, D. J . In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 3, p 777.
J . Org. Chem, Vol. 69, No. 17, 2004 5669