Angewandte
Chemie
[10] For a review, see: B. DelouvriØ, L. Fensterbank, F. Nµjera, M.
Malacria, Eur. J. Org. Chem. 2002, 3507.
[11] V. K. Aggarwal, J. K. Barrell, J. M. Worrall, R. Alexander, J.
Org. Chem. 1998, 63, 7128.
[12] CCDC 213619–213621 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
[13] L. F. Tietze, A. Schuffenhauer, P. R. Schreiner, J. Am. Chem.
Soc. 1998, 120, 7952.
[14] C. Janiak, J. Chem. Soc. Perkin Trans. 1 2000, 3885.
[15] For the concept of chiral acyl anion, see : a) L. Colombo, C.
Gennari, C. Scolastico, G. Guanti, E. Narisano, J. Chem. Soc.
Chem. Commun. 1979, 591; b) C. Gaul, K. Schꢀrer, D. Seebach,
J. Org. Chem. 2001, 66, 3059, and references therein.
[16] a) S. G. Pyne, P. Bloem, S. L. Chapman, C. E. Dixon, R. Griffith,
J. Org. Chem. 1990, 55, 1086; b) D. J. Abbott, S. Colonna, J. M.
Stirling, J. Chem. Soc. Perkin Trans. 1 1976, 492.
[17] The S absolute configurations of 5 and 6 were determined by
correlation: (R)-5 was made independently from (R)-phenyl-
glycinol, and LAH reduction of 6 afforded (S)-5 with no loss of
optical purity and with completely opposite optical activity, see
the Supporting Information.
[18] The absolute configuration of 7 was determined by chemical
correlation, see the Supporting Information.
[19] The absolute configuration of 12 was determined by chemical
correlation with a compound described by G. Tsuchihashi, S.
Mitamura, S. Inoue, K. Ogura, Tetrahedron Lett. 1973, 14, 323,
see the Supporting Information.
Scheme 7. Synthesis of (+)-erythro-roccellic acid.
In conclusion, we have shown that alkylidene bis(sulf-
oxide) derivatives are exceptional partners in high-yielding
and totally diastereoselective Michael additions. The use of
heteronucleophiles (amines and alkoxides) paves the way to
enantiopure a-amino and a-hydroxy acids as well as b-amino
À
alcohols and diols. C Cbond formation can also be achieved
and the stereoselection conveniently controlled by means of
chelation or lack of chelation by the choice of the counterion
(Li+, Na+ vs. Cu+). A new route to enantiopure succinate
derivatives is also open, as demonstrated by the first
asymmetric synthesis of (+)-erythro-roccelic acid, which
relies on the highly diastereoselective addition of a lithium
ester enolate to an appropriate, readily available bissulfinyl
acceptor.
[20] S. K. Madan, C. M. Hull, L. J. Herman, Inorg. Chem. 1968, 7,
491.
[21] a) G. H. Posner, T. P. Kogan, M. Hulce, Tetrahedron Lett. 1984,
25, 383; b) G. H. Posner, J. P. Mallamo, K. Miura, J. Am. Chem.
Soc. 1981, 103, 2886.
Received: July 11, 2003 [Z52356]
[22] For the mechanism of copper-mediated addition reactions, see:
S. Mori, E. Nakamura in Modern Organocopper Chemistry (Ed.:
N. Krause), Wiley-VCH, Weinheim, 2002.
[23] The R absolute configurations of 16a and 16d were determined
by chemical derivatization. Pummerer reactions followed by
reduction provided known enantiopure alcohols (see the Sup-
porting Information).
[24] G. Geisslinger, S. Grꢁsch, PCT Int. Appl. WO 02/24190A1,
2002.
[25] C. H. Heathcock, M. C. Pirrung, S. H. Montgomery, J. Lampe,
Tetrahedron 1981, 37, 4087.
[26] a) The Merck Index, 12th Edition, 1996, article 8405; b) S.
Huneck, J. Schmidt, A. Porzel, Z. Naturforsch. B 1994, 49, 561,
and references therein.
[27] S. Mangaleswaran, N. P. Argade, J. Chem. Soc. Perkin Trans. 1
2001, 1764.
Keywords: allylic compounds · asymmetric synthesis ·
Michael addition · sulfoxides · total synthesis
.
[1] P. Perlmutter, Conjugate Addition Reactions in Organic Syn-
thesis, Pergamon, Oxford, 1992.
[2] H.-G. Schmalz in Comprehensive Organic Synthesis, Vol. 4 (Ed.:
M. F. Semmelhack), Pergamon, Oxford, 1991, pp. 199 – 236.
[3] For reviews: a) M. P. Sibi, S. Manyem, Tetrahedron 2000, 56,
8033; b) N. Krause, A. Hoffmann-Roder, Synthesis 2001, 171;
c) A. Alexakis, C. Benhaim, Eur. J. Org. Chem. 2002, 3221.
[4] B. E. Rossiter, N. M. Swingle, Chem. Rev. 1992, 92, 771.
[5] M. C. Carreæo, Chem. Rev. 1995, 95, 1717.
[6] a) G. H. Posner, Acc. Chem. Res. 1987, 20, 72. For a radical
version of this, see: b) N. Mase, Y. Watanabe, Y. Ueno, T. Toru, J.
Org. Chem. 1997, 62, 7794; c) N. Mase, N. Watanabe, T. Toru, J.
Org. Chem. 1998, 63, 3899.
[28] For an illustration of this, see: M. P. Sibi, H. Hasegawa, Org. Lett.
2002, 4, 3347.
[7] For an approach involving a phosphoryl sulfinyl alkylidene, see:
W. H. Midura, M. Mikołajczyk, Tetrahedron Lett. 2002, 43, 3061.
[8] a) Y. Arai, S. Kuwayama, Y. Takeuchi, T. Koizumi, Synth.
Commun. 1986, 16, 233; b) G. SolladiØ, F. Colobert, P. Ruiz, C.
Hamdouchi, M. C. Carreæo, J. L. García Ruano, Tetrahedron
Lett. 1991, 32, 3695; c) J. C. Carretero, J. L. García Ruano, L. M.
Martín Cabrejas, Tetrahedron: Asymmetry 1997, 8, 409; d) B.
DelouvriØ, F. Nµjera, L. Fensterbank, M. Malacria, J. Organo-
met. Chem. 2002, 643–644, 130.
[9] For recent contributions of this group, see: a) V. K. Aggarwal,
S. J. Roseblade, J. K. Barrell, R. Alexander, Org. Lett. 2002, 4,
1227; b) V. K. Aggarwal, R. M. Steele, Ritmaleni, J. K. Barrell,
I. Grayson, J. Org. Chem. 2003, 68, 4087, and references therein.
Angew. Chem. Int. Ed. 2003, 42, 5342 –5345
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5345