R.W. Winter et al. / Journal of Fluorine Chemistry 122 (2003) 251–253
253
[3] J.T. Welch, Tetrahedron 43 (1987) 3123.
were combined and separated by silica gel chromatogra-
phy—solvent removed under vacuum to give pure 4, iden-
[4] R. Winter, G.L. Gard, Functionalization of pentafluoro-l6-sulfanyl
(SF5) olefins and acetylenes, in: J.S. Thrasher, S.H. Strauss (Eds.),
Inorganic Fluorine Chemistry Towards the 21st Century, ACS
Symposium Series #555, Washington, DC, 1994 (Chapter 8).
[5] P. Kirsch, M. Bremer, A. Taugerbeck, T. Wallmichrath, Angew.
Chem., Int. Ed. Engl. 40 (2001) 1480.
1
tified by IR, 19F and H NMR and HRMS. For example,
0.98 g (2.6 mmol) of the above o-F adduct, 5.2 ml CH2Cl2,
and 0.89 g (4.6 mmol) AgBF4 were added to a 30 ml Carius
tube under an argon atmosphere. The reaction mixture was
stirred for 22.5 h at 0 8C; the solid phase was removed by
vacuum filtration and washed with small amounts of
CH2Cl2. The filtrate was passed through a short column
of silica gel in order to remove any polar constituents and the
eluate was concentrated under vacuum at À24 8C. The yield
of the product was 93%.
[6] U. Geiser, J.A. Schlueter, H.H. Wang, A.M. Kini, P.P. Sche, H.I.
Zakowicz, M.L. Van Zile, J.D. Dudek, J.M. Williams, J. Renn, M.H.
Whangbo, P.G. Nixon, R.W. Winter, G.L. Gard, J. Am. Chem. Soc.
118 (1996) 9996.
[7] J.A. Schlueter, B.H. Ward, U. Geiser, H.H. Wang, A.M. Kini, J.P.
Parakka, E. Morales, H.J. Koo, M.H. Whangbo, R.W. Winter, J.
Mohtasham, G.L. Gard, Chem. Mater. 11 (2001) 2008.
[8] B.H. Ward, J.A. Schlueter, U. Geiser, H.H. Wang, E. Morales, J.P.
Parakka, S.Y. Thomas, J.M. Williams, P.G. Nixon, R.W. Winter, G.L.
Gard, H.-J. Koo, M.H. Whangbo, Chem. Mater. 12 (2000) 343.
[9] T.L. St. Clair, A.K. St. Clair, J.S. Thrasher, US Patent 5,220,070
(1993).
Acknowledgements
[10] J.C. Hansen, P.M. Savu, US Patent 5,286,352 (1994).
[11] R. Winter, P.G. Nixon, G.L. Gard, D.G. Castner, N.R. Holcomb, Y-H.
Hu, D.W. Grainger, Chem. Mater. 11 (1999) 3044.
We (PSU, UI) are grateful to the National Science Foun-
dation (CHE-9904316 and CHE-9820769) for support of
´
this work. We wish to thank Jeff Morre (Mass Spectrometry
[12] P.G. Nixon, R. Winter, D.G. Castner, N.R. Holcomb, D.W. Grainger,
G.L. Gard, Chem. Mater. 12 (2000) 3108.
Laboratory, Oregon State University, Corvallis, Oregon) for
obtaining the high resolution mass spectra (HRMS).
[13] W.A. Sheppard, J. Am. Chem. Soc. 84 (1962) 3064.
[14] R.D. Bowden, P.J. Comina, M.P. Greenhall, B.M. Kariuki, A.
Loveday, D. Philp, Tetrahedron 56 (2000) 3399.
[15] A.M. Sipyagin, C.P. Bateman, Y.-T. Tan, J.S. Thrasher, J. Fluorine
Chem. 112 (2001) 287.
References
[16] A.M. Hodges, R.W. Winter, S.W. Winner, D.A. Preston, G.L. Gard,
J. Fluorine Chem. 114 (2002) 3.
[1] R.E. Banks, B.E. Smart, J.C. Tatlow (Eds.), Organofluorine
Chemistry—Principles and Commercial Applications, Plenum Press,
New York, London, 1994.
[17] R.W. Winter, S.W. Winner, D.A. Preston, J. Mohtasham, J.A. Smith,
G.L. Gard, J. Fluorine Chem. 115 (2002) 101.
[2] J. McCarthy, Utility of Fluorine in Biologically Active Molecules, in:
Proceedings of the Presentation at the 219th National American
Chemical Society Meeting, San Francisco, CA, 2000, p. 1.
[18] R.W. Winter, G.L. Gard, J. Fluorine Chem. 118 (2002) 157.
[19] R. Anilkumar, D.J. Burton, Tetrahedron Lett. 43 (2002) 2731.
[20] R. Winter, R.J. Terjeson, G.L. Gard, J. Fluorine Chem. 89 (1998) 105.