Angewandte
Chemie
(Scheme 5, 26–29).[17,18] The NMR spectra of compounds 24–
29 were clearly distinct from those of the natural myriapor-
ones 3–4.
[5] a) R. E. Taylor, B. R. Hearn, J. P. Ciavarri, Org. Lett. 2002, 4,
2953 – 2955; b) R. E. Taylor, J. P. Ciavarri, B. R. Hearn, Tetrahe-
dron Lett. 1998, 39, 9361 – 9364.
[6] a) B.-Z. Zheng, M. Yamauchi, H. Dei, O. Yonemitsu, Chem.
Pharm. Bull. 2000, 48, 1761 – 1765; b) B.-Z. Zheng, M. Yamau-
chi, H. Dei, S. Kusaka, K. Matsui, O. Yonemitsu, Tetrahedron
Lett. 2000, 41, 6441 – 6444; d) T. Matsushima, M. Mori, B.-Z.
Zheng, H. Maeda, N. Nakajima, J.-I. Uenishi, O. Yonemitsu,
Chem. Pharm. Bull. 1999, 47, 308 – 321; e) T. Matsushima, M.
Mori, N. Nakajima, H. Maeda, J.-I. Uenishi, O. Yonemitsu,
Chem. Pharm. Bull. 1998, 46, 1335 – 1336.
[7] W. R. Roush, G. C. Lane, Org. Lett. 1999, 1, 95 – 98.
[8] a) T. Matsushima, B.-Z. Zheng, H. Maeda, N. Nakajima, J.
Uenishi, O. Yonemitsu, Synlett 1999, 780 – 782; b) B.-Z. Zheng,
H. Maeda, M. Mori, S.-I. Kusaka, O. Yonemitsu, T. Matsushima,
N. Nakajima, J.-I. Uenishi, Chem. Pharm. Bull. 1999, 47, 1288 –
1296.
[9] T.-P. Loh, L.-C. Feng, Tetrahedron Lett. 2001, 42, 3223 – 3226.
[10] D. A. Evans, E. B. Sjogren, J. Bartroli, R. L. Dow, Tetrahedron
Lett. 1986, 27, 4957 – 4960.
[11] D. A. Evans, K. T. Chapman, J. Bisaha, J. Am. Chem. Soc. 1984,
106, 4261 – 4263.
[12] T. D. Penning, S. W. Djuric, R. A. Haack, V. J. Kalish, J. M.
Miyashiro, B. W. Rowell, S. S. Yu, Synth. Commun. 1990, 20,
307 – 312.
[13] See reference [9] for a similar transformation.
[14] The configuration of the aldol products was assigned by
conversion of the 1,3-diols into the corresponding acetonides.
The acetonide of syn-1,3-diol 18b gave rise to a signal for the
axial methyl group at d = 20.2 ppm and for the equatorial methyl
group at d = 30.0 ppm in the 13C NMR spectrum, whereas the
acetonide of anti-1,3-diol 18a showed the methyl groups at d =
24.4 and 25.2 ppm. See: S. D. Rychnovsky, B. Rogers, G. Yang, J.
Org. Chem. 1993, 58, 3511 – 3515.
[15] a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155 – 4256;
b) D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277 –
7287.
[16] S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815 – 3818.
[17] Reaction conditions and yields are given in the Supporting
Information.
Scheme 5. The C5 epimers 24 and 25 of 4 and 3, respectively, as well
the series with the non-natural configuration at C6 or C5–C6, 26–29
(see the Supporting Information for details on the synthesis).
In summary, the total synthesis of the myriaporones 1, 3,
and 4 (1, 3–4) was based on two consecutive aldol reactions.[19]
The ethyl ketone was introduced in a straightforward manner
by the addition of an ethyl Grignard reagent to the highly
functionalized Weinreb amide 20 bearing keto and epoxide
functions. The simplicity of this approach is promising for the
preparation of new derivatives from this key intermediate.
Additionally, this route allows the synthesis of a variety of
stereoisomers of 1, 3–4 and other derivatives for further
biological testing. This work allowed the unambiguous
determination of the relative and absolute configurations of
these cytotoxic compounds to be those shown in formulae 1,
3–4.
[18] These series with the non-natural configuration at C6, could also
be synthesized from 30, which was prepared by oxidation of 14.
Further elaboration, as shown in Scheme 4, included the
cleavage of the vinyl group by ozonolysis, followed by reduction
in situ with NaBH4 to form the alcohol.
Received: November 13, 2003 [Z53313]
Keywords: aldol reaction · antitumor agents ·
.
diastereoselectivity · natural products · total synthesis
[19] For an alternative total synthesis of myriaporones 1, 3, and 4 see
following Communication in this issue: K. N. Fleming, R. E.
Taylor, Angew. Chem. 2004, 116, 1760–1762; Angew. Chem. Int.
Ed. 2004, 43, 1728–1730.
[1] a) K. L. Rinehart, K. Tachibana, J. Nat. Prod. 1995, 58, 344 – 358;
b) K. L. Rinehart, J. F. Cheng, J.-S. Lee, US Patent 5,514,708,
1996 [Chem. Abstr. 1996, 125, 5896].
[2] a) F. J. Schmitz, S. P. Gunasekera, G. Yalamanchili, M. B.
Hossain, D. Van der Helm, J. Am. Chem. Soc. 1984, 106, 7251 –
7252; b) T. Matsushima, K. Horita, N. Nakajima, O. Yonemitsu,
Tetrahedron Lett. 1996, 37, 385 – 388.
[3] N. Fusetani, T. Sugawara, S. Matsunaga, H. Hirota, J. Org. Chem.
1991, 56, 4971 – 4974.
[4] for the total synthesis of deoxytedanolide (6), see: A. B. Smith,
C. M. Adams, S. A. Barbosa, A. P. Degnan, J. Am. Chem. Soc.
2003, 125, 350 – 351.
Angew. Chem. Int. Ed. 2004, 43, 1724 –1727
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1727