3082
K. L. Sayle et al. / Bioorg. Med. Chem. Lett. 13 (2003) 3079–3082
and supports the putative role of the nitroso group in
constraining the 6-amino group of NU6027 into an
optimal binding orientation, by virtue of an
intramolecular hydrogen bond with the pyrimidine
6-amino group.9 Nevertheless, the 2-sulfanilylpyr-
imidine (8b) exhibited potency comparable with the
parent nitrosopyrimidine 2.
Acknowledgements
The authors thank Cancer Research UK, AstraZeneca,
the EPSRC (Studentship to K.L.S.), the BBSRC (Stu-
dentship to D.J.P.), and MRC for financial support. We
also wish to acknowledge the use of the EPSRC Che-
mical Database Service at Daresbury, and to thank the
beamline scientists at Elettra and at the ESRF for
excellent facilities during data collection.
The interaction of the 2-arylaminopyrimidines with
CDK2 was investigated by determining the crystal
structure of the carboxamide derivative (9d) bound to
˚
phospho-Thr160 CDK2/cyclin A complex at 2.6 A (Fig.
References and Notes
2).15 Compound 9d is bound in the ATP-binding site of
the kinase in the expected orientation for this series of
compounds. The pyrimidine moiety binds analogously
to the purine of NU6102, forming three hydrogen bonds
with the hinge region of the protein (rGlu81(CO)-N6=2.7
1. Sherr, C. J. Science 1996, 274, 1672.
2. Malumbres, M.; Barbacid, M. Nat. Rev. Cancer 2001, 1, 222.
3. Senderowicz, A. M.; Sausville, E. A. J. Natl. Cancer Inst.
2000, 92, 376.
4. Meijer, L.; Raymond, E. Acc. Chem. Res. 2003, 36, 417.
5. Sausville, E. A. Trends. Mol. Med. 2002, 8, S32.
6. Knockaert, M.; Greengard, P.; Meijer, L. Trends Pharm.
Sci. 2002, 23, 417.
7. Sielecki, T. M.; Boylan, J. F.; Benfield, P. A.; Trainor, G. L.
J. Med. Chem. 2000, 43, 1.
8. Hardcastle, I. R.; Golding, B. T.; Griffin, R. J. Annu. Rev.
Pharmacol. Toxicol. 2002, 42, 325.
9. Arris, C. E.; Boyle, F. T.; Calvert, A. H.; Curtin, N. J.; End-
icott, J. A.; Garman, E. F.; Gibson, A. E.; Golding, B. T.; Grant,
S.; Griffin, R. J.; Jewsbury, P.; Johnson, L. N.; Lawrie, A. M.;
Newell, D. R.; Noble, M. E. M.; Sausville, E. A.; Schultz, R.;
Yu, W. J. Med. Chem. 2000, 43, 2797.
10. Gibson, A. E.; Arris, C. E.; Bentley, J.; Boyle, F. T.;
Curtin, N. J.; Davies, T. G.; Endicott, J. A.; Golding, B. T.;
Grant, S.; Griffin, R. J.; Jewsbury, P.; Johnson, L. N.; Mes-
guiche, V.; Newell, D. R.; Noble, M. E. M.; Tucker, J. A.;
Whitfield, H. J. J. Med. Chem. 2002, 45, 3381.
11. Mesguiche, V.; Parsons, R. J.; Arris, C. E.; Bentley, J.;
Boyle, F. T.; Calvert, A. H.; Curtin, N. J.; Davies, T. G.; End-
icott, J. A.; Gibson, A. E.; Golding, B. T.; Griffin, R. J.; Jews-
bury, P.; Johnson, L. N.; Newell, D. R.; Noble, M. E. M.; Wang,
L. Z.; Hardcastle, I. R. Bioorg. Med. Chem. Lett. 2003, 13, 217.
12. Davies, T. G.; Bentley, J.; Arris, C. E.; Boyle, F. T.; Curtin,
N. J.; Endicott, J. A.; Gibson, A. E.; Golding, B. T.; Griffin, R. J.;
Hardcastle, I. R.; Jewsbury, P.; Johnson, L. N.; Mesguiche, V.;
Newell, D. R.; Noble, M. E. M.; Tucker, J. A.; Wang, L.; Whit-
field, H. J. Nat. Struct. Biol. 2002, 9, 745.
13. All new compounds exhibited spectral (1H NMR, IR, UV)
and analytical (elemental analysis and/or LC–MS) data fully
consistent with the assigned structures.
14. Hardcastle, I. R.; Arris, C. E.; Bentley, J.; Boyle, F. T,;
Calvert, A. H.; Curtin, N. J.; Davies, T. G.; Endicott, J. A.;
Gibson, A. E.; Golding, B. T.; Griffin, R. J.; Jewsbury, P.;
Johnson, L. N.; Menyerol, J.; Mesguiche, V.; Newell, D. R.;
Noble, M. E. M.; Tucker, J. A.; Wang, L.; Whitfield, H. J.;
Manuscript in preparation.
15. PDB code 10GU. Crystallographic R-factor=20%; free
R-factor=26%.
16. Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem.
Inf. Comput. Sci. 1996, 36, 746.
˚
˚
˚
A; rLeu83(NH)-N1=3.5 A; rLeu83(CO)-N2=2.7 A). As
expected, the 5-nitroso group forms an intramolecular
hydrogen bond with N6 to stabilise the purine-mimetic
conformation. The N2-aryl substituent also binds simi-
larly to that of NU6102, packing against the peptide
backbone of CDK2 between residues His84 and Gln85.
The Cambridge Structural Database (CSD) for small
molecule crystal structures16 was consulted to determine
the preferred orientation of a carboxamide substituent
on a phenyl ring. The preferred torsion angle between
the plane of the ring and the plane of the carbox-
amide is 18ꢀ10ꢂ. This result was used as a restraint in
the refinement of the crystal structure. Possible inter-
actions close to the carboxamide include the Asp86
side chain and backbone nitrogen. Although electron
density cannot, at this resolution, unambiguously dis-
tinguish the carboxamide nitrogen from the carbox-
amide oxygen, the orientation can be inferred from the
surrounding protein groups. In the most chemically rea-
sonable conformation, the carboxamide nitrogen interacts
˚
with the Asp86 side chain with rN-Asp86(OD2)=3.3 A and
a torsion angle of 41ꢂ. Thus, the carboxamide function
of 9d mimics one of the two hydrogen bonding interac-
tions previously observed for the NU6102 sulfonamide
group.
In summary, an expedient route for the synthesis of 2-
arylamino-4-cyclohexylmethyl-5-nitrosopyrimidine CDK
inhibitors has been developed, and utilised for the pre-
paration of a small series of compounds. The results are
consistent with the known binding mode of NU6027
within the ATP-binding site of CDK2, and with SARs
observed for the analogous purine series. The crystal
structure of 9d in complex with CDK2–cyclinA, reveals
additional protein–ligand interactions compared with 2,
which account for the potent inhibitory activity of the
pyrimidine.