Journal of the American Chemical Society
Page 4 of 6
2484-2485; (g) For a recent isomerization of terminal alkenes see S.
tivity was noted: this was most pronounced in the disubsti-
W. M. Crossley, F. Barabe, R. A. Shenvi, J. Am. Chem. Soc. 2014, 136,
16788-16791.
1
2
3
4
tuted system 30 (Z:E 1:99).
By emulating the flavin-mediated activation of complex
(poly)enes, an operationally simple, highly (Z)-selective
isomerization of activated olefins has been developed em-
(4)
33-58.
(5)
W. Y. Siau, Y. Zhang, Y. Zhao, Top. Cur. Chem. 2012, 327,
For a recent transition metal based photocatalytic isomer-
5
6
7
8
ization of allylic amines see K. Singh, S. J. Staig, J. D. Weaver, J. Am.
Chem. Soc. 2014, 136, 5275-5278.
ploying inexpensive, commercially available (–)-riboflavin as
the photo-catalyst. In contrast to the signature Z → E isomer-
ization of the natural system, the directionality of the isom-
erization (E → Z) was inverted by truncating the retinal scaf-
fold, and introducing a third olefin substituent to augment
A1,3-strain upon isomerization. The transformation is gener-
ally applicable to substrates in which the cinnamyl motif is
embedded: this includes esters, aldehydes, ketones, Weinreb
amides and carboxylic acids. In this latter case the method
can be extended to generate 4-substituted coumarins direct-
ly. Correlation of sensitizer triplet energy (ET) and reaction
efficiency, together with the study of additive effects and
mechanistic probes (see SI), has allowed a mechanistic hy-
pothesis to be formulated based on selective excitation. It is
envisaged that the guidelines delineated from this study will
facilitate the rapid development of a (photo)-catalyst tool
box25 to address the need for highly selective, generic isomer-
ization catalysts.
(6)
M. N. Chatterjee, E. R. Kay, D. A. Leigh, J. Am. Chem. Soc.
2006, 128, 4058-4073.
(7)
For examples of photocatalysis using sensitisers see: (a) A.
9
Bauer, F. Westkämper, S. Grimme, T. Bach, Nature 2005, 436, 1139-
1140; (b) C. Müller, A. Bauer, T. Bach, Angew. Chem. Int. Ed. 2009, 48,
6640 – 6642; Angew. Chem. 2009, 121, 6767-6769; (c) C. Müller, A.
Bauer, M. M. Maturi, M. C. Cuquerella, M. A. Miranda, T. Bach, J.
Am. Chem. Soc. 2011, 133, 16689-16697; (d) M. M. Maturi, M.
Wenniger, R. Alonso, A. Bauer, A. Pöthig, E. Riedle, T. Bach, Chem.
Eur. J. 2013, 19, 7461-7472; (e) R. Alonso, T. Bach, Angew. Chem. Int.
Ed. 2014, 53, 4368-4371; Angew. Chem. 2014, 126, 4457-4460; (f) M. M.
Maturi, T. Bach, Angew. Chem. Int. Ed. 2014, 53, 7661-7664; Angew.
Chem. 2014, 126, 7793-7796; (g) for recent reviews on photocatalysis
see D. A. Nicewicz, T. M. Nguyen ACS Catal. 2014, 4, 355-360; R.
Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed.
2015, 54, 3872-3890; Angew. Chem. 2015, 127, 3944-3963.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8)
For examples of cis-trans isomerizations of stilbenes see
(a) G. S. Hammond, J. Saltiel, J. Am. Chem. Soc. 1962, 84, 4983-4984;
(b) G. S. Hammond, J. Saltiel, J. Am. Chem. Soc. 1963, 85, 2515-2516;
(c) G. S. Hammond, J. Saltiel, A. A. Lamola, N. J. Turro, J. S. Brad-
shaw, D. O. Cowan, R. C. Counsell, V. Vogt, C. Dalton, J. Am. Chem.
Soc. 1964, 86, 3197-3217.
ASSOCIATED CONTENT
Supporting Information
(9)
For examples of cis-trans isomerizations of styrenes see (a)
NMR spectra, absorption spectra, experimental procedures
and mechanistic studies. Supporting information is available
T. Arai, H. Sakuragi, K. Tokumaru, Chem. Lett. 1980, 261-264 ; (b) T.
Arai, H. Sakuragi, K. Tokumaru, Bull. Chem. Soc. Jpn. 1982, 2204-
2207.
(10)
(a) F. Gai, K. C. Hasson, J. Cooper MacDonald, P. A. An-
finrud, Science 1998, 279, 1886-1891; (b) B. O’Leary, B. Duke, J. E.
Eilers, Nature 1973, 246, 166-167; (c) G. Bassolino, T. Sovdat, M.
Liebel, C. Schnedermann, B. Odell, T. D. W. Claridge, P. Kakura, S.
P. Fletcher, J. Am. Chem. Soc. 2014, 136, 2650-2658.
AUTHOR INFORMATION
Corresponding Author
*ryan.gilmour@uni-muenster.de
(11)
A. G. Walker, G. K. Radda, Nature 1967, 215, 1483.
(12)
E. García-Expósito, M. J. Bearpark, R. M. Ortuño, M. A.
Notes
Robb, V. Branchadell, J. Org. Chem. 2002, 67, 6070-6077.
This study is dedicated to Prof. Dr. Albert Eschenmoser (ETH
(13)
(14)
T. Bach, Synthesis 1998, 683-703.
For examples of oxidation chemistry catalyzed by RF see:
Zürich) on the occasion of his 90th birthday.
(a) S. Fukuzumi, S. Kuroda, T. Tanaka, J. Am. Chem. Soc. 1985, 107,
3020-3027; (b) S. Murahashi, T. Oda, Y. Masui, J. Am. Chem. Soc.
1989, 111, 5002-5003; (c) Y. Imada, H. Iida, S. Ono, S.-I. Murahashi, J.
Am. Chem. Soc. 2003, 125, 2868-2869; (d) Y. Imada, H. Iida, S.-I.
Murahashi, T. Naota, Angew. Chem. Int. Ed. 2005, 44, 1704-1706;
Angew. Chem. 2005, 117, 1732-1734; (e) J. Svoboda, H. Schmaderer, B.
König, Chem. Eur. J. 2008, 14, 1854-1865; (f) H. Schmaderer, P.
Hilgers, R. Lechner, B. König, Adv. Synth. Catal. 2009, 351, 163-174;
(g) B. König, R. Lechner, Synthesis 2010, 2010, 1712-1718; (h) R.
Lechner, S Kümmel, B. König, Photochem. Photobiol. Sci. 2010, 9,
1367-1377; (i) S.-I. Murahashi, D. Zhang, H. Iida, T. Miyawaki, M.
Uenaka, K. Murano, K. Meguro, Chem. Commun. 2014, 50, 10295-
10298.
ACKNOWLEDGMENT
We acknowledge generous financial support from the WWU
Münster, the Deutsche Forschungsgemeinschaft (SFB 858,
and Excellence Cluster EXC 1003 “Cells in Motion – Cluster of
Excellence”), and the Fonds der Chemischen Industrie (FCI
Fellowship to J. B. Metternich).
REFERENCES
(1)
For selected reviews on organocatalysis see (a) D. W. C.
MacMillan, Nature 2008, 455, 304-308; (b) Asymmetric Organocatal-
ysis: From Biomimetic Concepts to Applications in Asymmetric Syn-
thesis (Eds.: A. Berkessel, H. Gröger), Wiley-VCH, Weinheim, 2005;
(c) Introduction: Organocatalysis. Chem. Rev. 2007, 107 (special
edition), 5413-5883.
(15)
For examples of reduction chemistry catalyzed by RF see:
(a) Y. Imada, H. Iida, T. Naota, J. Am. Chem. Soc. 2005, 127, 14544-
14545; (b) C. Smit, M. W. Fraaije, A. J. Minnaard, J. Org. Chem. 2008,
73, 9482-9485; (c) Y. Imada, T. Kitagawa, T. Ohno, H. Iida, T. Naota,
Org. Lett. 2009, 12, 32-35; (d) J. F. Teichert, T. den Hartog, M.
Hanstein, C. Smit, B. ter Horst, V. Hernandez-Olmos, B. L. Feringa,
A. J. Minnaard, ACS Catalysis 2011, 1, 309-315.
(2)
(3)
B. M. Trost, Science 1996, 245, 1471-1477.
For selected recent examples of E→Z olefin isomerization
using organonmetallic catalysts see (a) F. Pünner, A. Schmidt, G.
Hilt, Angew. Chem. Int. Ed. 2012, 51, 1270-1273; Angew. Chem. 2012,
124, 1296-1299; (b) L.-G. Zhuo, Z.-K. Yao, Z.-X. Yu, Org. Lett. 2013, 15,
4634-4637; (c) C. Chen, T. R. Dugan, W. W. Brennessel, D. J. Weix, P.
L. Holland, J. Am. Chem. Soc. 2014, 136, 945-955; (d) Y. N. Timsina,
S. Biswas, T. V. Rajanbabu, J. Am. Chem. Soc. 2014, 136, 6215-6218; (e)
C. R. Larsen, G. Erdogan, D. B. Grotjahn, J. Am. Chem. Soc. 2014, 136,
1226-1229; (f) for a perspective see G. Hilt, ChemCatChem 2014, 6,
(16)
(a) U. Megerle, M. Wenninger, R.-J. Kutta, R. Lechner, B.
König, B. Dick, E. Riedle, PhysChemChemPhys 2011, 13, 8869-8880;
(b) J. Dadova, S. Kümmel, C. Feldmeier, J. Cibulkova, R. Pazout, J.
Maixner, R. M. Gschwind, B. König, R. Cibulka, Chem. Eur. J. 2013, 19,
1066-1075; (c) C. Feldmeier, H. Bartling, E. Riedle, R. M. Gschwind, J.
Magn. Reson. 2013, 232, 39-44; (d) C. Feldmeier, H. Bartling, K.
ACS Paragon Plus Environment