Organic Letters
Letter
2017, 3549−3564. For recent examples, see: (c) Hua, R.; Tian, X.
Re(CO)5Br-Catalyzed Addition of Carboxylic Acids to Terminal
Alkynes: A High Anti-Markovnikov and Recoverable Homogeneous
Catalyst. J. Org. Chem. 2004, 69, 5782−5784. (d) Kuninobu, Y.;
Kawata, A.; Takai, K. Rhenium-Catalyzed Formation of Indene
Frameworks via C−H Bond Activation: [3 + 2] Annulation of
Aromatic Aldimines and Acetylenes. J. Am. Chem. Soc. 2005, 127,
13498−13499. (e) Kusama, H.; Yamabe, H.; Onizawa, Y.; Hoshino,
T.; Iwasawa, N. Rhenium(I)-Catalyzed Intramolecular Geminal
Carbofunctionalization of Alkynes: Tandem Cyclization of ω-
Acetylenic Dienol Silyl Ethers. Angew. Chem., Int. Ed. 2005, 44,
468−470. (f) Kuninobu, Y.; Nishina, Y.; Matsuki, T.; Takai, K.
Synthesis of Cp−Re Complexes via Olefinic C−H Activation and
Successive Formation of Cyclopentadienes. J. Am. Chem. Soc. 2008,
130, 14062−14063. (g) Saito, K.; Onizawa, Y.; Kusama, H.; Iwasawa,
N. Rhenium(I)-Catalyzed Cyclization of Silyl Enol Ethers Containing
a Propargyl Carboxylate Moiety: Versatile Access to Highly
Substituted Phenols. Chem. - Eur. J. 2010, 16, 4716−4720.
(h) Dudle, B.; Rajesh, K.; Blacque, O.; Berke, H. Rhenium in
Homogeneous Catalysis: [ReBrH(NO)(labile ligand)(large-bite-angle
diphosphine)] Complexes as Highly Active Catalysts in Olefin
Hydrogenations. J. Am. Chem. Soc. 2011, 133, 8168−8178. (i) Liu,
Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z.
Photochemical Preparation of Pyrimidin-2(1H)-ones by Rhenium(I)
Complexes with Visible Light. J. Org. Chem. 2011, 76, 1444−1447.
(j) Fukumoto, Y.; Daijo, M.; Chatani, N. Rhenium-Catalyzed Regio-
and Stereoselective Addition of Imines to Terminal Alkynes Leading
to N-Alkylideneallylamines. J. Am. Chem. Soc. 2012, 134, 8762−8765.
(k) Peng, H.; Lin, A.; Zhang, Y.; Jiang, H.; Zhou, J.; Cheng, Y.; Zhu,
C.; Hu, H. Oxidation and Amination of Benzylic sp3 C−H Bond
Catalyzed by Rhenium(V) Complexes. ACS Catal. 2012, 2, 163−167.
(l) Sueki, S.; Guo, Y.; Kanai, M.; Kuninobu, Y. Rhenium-Catalyzed
Synthesis of 3-Imino-1-isoindolinones by C-H Bond Activation:
Application to the Synthesis of Polyimide Derivatives. Angew. Chem.,
Int. Ed. 2013, 52, 11879−11883. (m) Sun, Y.; Chen, H. Performance
of Density Functionals for Activation Energies of Re-Catalyzed
Organic Reactions. J. Chem. Theory Comput. 2014, 10, 579−588.
(n) Jin, H.; Zhu, Z.; Jin, N.; Xie, J.; Cheng, Y.; Zhu, C. CO-enabled
Rhenium Hydride Catalyst for Directed C(sp2)−H Bond Alkylation
with Olefins. Org. Chem. Front. 2015, 2, 378−382. (o) Wang, C.;
Rueping, M. Rhenium- and Manganese-Catalyzed Selective Alkeny-
lation of Indoles. ChemCatChem 2018, 10, 2681−2685. (p) Murai,
M.; Uemura, E.; Takai, K. Amine-Promoted anti-Markovnikov
Addition of 1,3-Dicarbonyl Compounds with Terminal Alkynes
under Rhenium Catalysis. ACS Catal. 2018, 8, 5454−5459.
(q) Prakash, S.; Chang, Y.-C.; Cheng, C.-H. Chem. - Asian J. 2018,
13, 1664−1668. (r) Chang, Y.-C.; Prakash, S.; Cheng, C.-H. ReI-
Catalyzed Highly Regio- and Stereoselective C−H Addition to
Terminal and Internal Alkynes. Org. Chem. Front. 2019, 6, 432−436.
(7) (a) Shi, X.; Li, C.-J. A Novel Rhodium-Catalyzed Cascade
Cyclization: Direct Synthesis of 3-Substituted Phthalides from
Aldehydes and Aromatic Acids. Adv. Synth. Catal. 2012, 354,
2933−2938. (b) Lian, Y.; Bergman, R. G.; Ellman, J. A. Rhodium-
(III)-Catalyzed Synthesis of Phthalides by Cascade Addition and
Cyclization of Benzimidates with Aldehydes. Chem. Sci. 2012, 3,
3088−3092. (c) Tan, P. W.; Juwaini, N. A. B.; Seayad, J.
Rhodium(III)-Amine Dual Catalysis for the Oxidative Coupling of
Aldehydes by Directed C−H Activation: Synthesis of Phthalides. Org.
Lett. 2013, 15, 5166−5169.
to Chiral Phthalides. Chem. - Eur. J. 2007, 13, 4356−4363. (d) Phan,
D. H. T.; Kim, B.; Dong, V. M. Phthalides by Rhodium-Catalyzed
Ketone Hydroacylation. J. Am. Chem. Soc. 2009, 131, 15608−15609.
(e) Omura, S.; Fukuyama, T.; Murakami, Y.; Okamoto, H.; Ryu, I.
Hydroruthenation Triggered Catalytic Conversion of Dialdehydes
and Keto Aldehydes to Lactones. Chem. Commun. 2009, 6741−6743.
(f) Zhang, B.; Xu, M.-H.; Lin, G.-Q. Catalytic Enantioselective
Synthesis of Chiral Phthalides by Efficient Reductive Cyclization of 2-
Acylarylcarboxylates under Aqueous Transfer Hydrogenation Con-
ditions. Org. Lett. 2009, 11, 4712−4715. (g) Zhang, Y.-H.; Shi, B.-F.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 6097. (h) Ackermann, L.;
Pospech, J. Ruthenium-Catalyzed Oxidative C−H Bond Alkenylations
in Water: Expedient Synthesis of Annulated Lactones. Org. Lett. 2011,
13, 4153−4155. (i) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H.
Rhodium(III)-Catalyzed [4 + 1] Annulation of Aromatic and Vinylic
Carboxylic Acids with Allenes: An Efficient Method Towards Vinyl-
Substituted Phthalides and 2-Furanones. Chem. - Eur. J. 2015, 21,
9198−9203.
(10) For selected examples, see: (a) Matsui, S.; Uejima, A.; Suzukia,
Y.; Tanaka, K. Asymmetric Synthesis of Optically Active Phthalides
via ortho-Lithiation and Cyclization of Chiral N-monosubstituted
Benzamides. J. Chem. Soc., Perkin Trans. 1 1993, 701−704.
(b) Townsend, C. A.; Christensen, S. B.; Davis, S. G. Synthesis of
Averufin and Its Role in Aflatoxin B1 Biosynthesis. J. Chem. Soc.,
Perkin Trans. 1 1988, 839−861. (c) Nishio, T.; Sekiguchi, H.
Thionation of ω-Hydroxy Amides with Lawesson’s Reagent: Syn-
thesis of Thioenamides and Sulfur-containing Heterocycles. Tetrahe-
dron 1999, 55, 5017−5026.
(8) For a review on phthalides, see: (a) Karmakar, R.; Pahari, P.;
Mal, D. Phthalides and Phthalans: Synthetic Methodologies and Their
Applications in the Total Synthesis. Chem. Rev. 2014, 114, 6213−
6284. For selected recent examples for phthalide synthesis, see:
(b) Kuriyama, M.; Ishiyama, N.; Shimazawa, R.; Shirai, R.; Onomura,
O. Efficient Synthesis of 3-Arylphthalides using Palladium-Catalyzed
Arylation of Aldehydes with Organoboronic Acids. J. Org. Chem.
2009, 74, 9210−9213. (c) Chang, H. T.; Jeganmohan, M.; Cheng, C.
H. Highly Efficient Cyclization of o-Iodobenzoates with Aldehydes
Catalyzed by Cobalt Bidentate Phosphine Complexes: A Novel Entry
E
Org. Lett. XXXX, XXX, XXX−XXX