X. Sun, J. Han, J. Chen, H. Deng, M. Shao, H. Zhang, W. Cao
FULL PAPER
Ma, Org. Lett. 2006, 8, 835–838; e) N. Zanatta, J. M. Schneider,
P. H. Schneider, A. D. Wouters, H. G. Bonacorso, M. A. P.
Martins, L. A. Wessjohann, J. Org. Chem. 2006, 71, 6996–6998;
f) G. Blay, I. Fernández, A. Monleón, J. R. Pedro, C. Vila, Org.
Lett. 2009, 11, 441–444; g) G. Daniel, H. Reissig, J. Org. Chem.
2014, 79, 4492–4502; h) C. F. James, H. L. Bruce, Green Chem.
2014, 16, 1097–1100; i) K. Tatsuhito, Y. Nagase, Y. Ohtsuka,
K. Yamamoto, D. Uraguchi, K. Tokuhisa, T. Yamakawa, J.
Fluorine Chem. 2010, 131, 98–105; j) V. M. Muzalevskiy, A. V.
Shastin, E. S. Balenkova, G. Haufe, V. G. Nenajdenko, Synthe-
sis 2009, 23, 3905–3929; k) V. A. Petrov, in: Fluorinated Hetero-
cyclic Compounds: Synthesis, Chemistry, and Applications, John
Wiley & Sons, Hoboken, NJ, 2009.
Preparation for 4a from 5: A mixture of methyl perfluoroalk-2-yno-
ate 3a (1.2 mmol) and 5 (1.0 mmol) was stirred in DMSO (10 mL)
at room temperature for 4 h. The reaction was quenched with
water, and the mixture was extracted with ethyl acetate (3ϫ 5 mL).
The combined extracts were washed with brine, dried with an-
hydrous Na2SO4, and filtered. The filtrate was concentrated, and
the residue was purified by flash chromatography on a silica gel to
give product 4a in 86% yield.
Preparation for 9 from 2a and 3a:[13] A solution of aniline (2a,
1.0 mmol) and methyl trifluorobut-2-ynoate (3a, 1.2 mmol) in
EtOH was stirred at room temperature for 10 min, and the solvent
was removed under vacuum. The residue was purified by column
chromatography on silica gel to give 9 in 96% yield as a white solid.
[4] a) Y. Kobayashi, I. Kumadaki, A. Ohsawa, H. Hamana, Tetra-
hedron Lett. 1977, 18, 867–868; b) Y. Kobayashi, H. Hamana,
S. Fujino, A. Ohsawa, I. Kumadaki, J. Org. Chem. 1979, 44,
4930–4933; c) R. W. Kaesler, E. LeGoff, J. Org. Chem. 1982,
47, 4779–4780; d) T. Umemoto, S. Ishihara, J. Am. Chem. Soc.
1993, 115, 2156–2164; e) J. J. Yang, R. L. Kirchmeier, J. M.
Shreeve, J. Org. Chem. 1998, 63, 2656–2660.
[5] a) S. P. Pitre, C. D. McTiernan, H. Ismaili, J. C. Scaiano, ACS
Catal. 2014, 4, 2530–2535; b) D. Tang, Y. Wang, J. Wang, P.
Xu, Tetrahedron Lett. 2014, 55, 4133–4135.
[6] a) L. F. Tietze, Chem. Rev. 1996, 96, 115–136; b) K. C. Nico-
laou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. 2006,
45, 7134–7186; Angew. Chem. 2006, 118, 7292–7344; c) L. Q.
Lu, J. R. Chen, W. J. Xiao, Acc. Chem. Res. 2012, 45, 1278–
1293; d) L. Y. Zheng, J. Ju, Y.-H. Bin, R. M. Hua, J. Org.
Chem. 2012, 77, 5794–5800; e) C. L. Hansen, J. W. Clausen,
R. G. Ohm, E. Ascic, S. T. Le Quement, D. Tanner, T. E. Niel-
sen, J. Org. Chem. 2013, 78, 12545–12565; f) O. E. Alawode,
V. K. Naganaboina, T. Liyanage, J. Desper, S. Rayat, Org. Lett.
2014, 16, 1494–1497.
General Procedure for Preparation of 2-(Perfluoroalkyl)pyrroles 4:
A mixture of substituted ω-bromoacetophenone 1 (1.0 mmol), pri-
mary amine 2 (1.2 mmol), and NaHCO3 (1.0 mmol) was stirred in
DMSO (10 mL) at room temperature for 4 h, and methyl per-
fluoroalk-2-ynoate 3 (2.0 mmol) was then added. The reaction mix-
ture was stirred at 100 °C for an additional 8 h and was then
quenched with water. The mixture was extracted with ethyl acetate
(3ϫ 5 mL). The combined extracts were washed with brine, dried
with anhydrous Na2SO4, and filtered. The filtrate was concen-
trated, and the residue was purified by flash chromatography on a
silica gel (petroleum ether/ethyl acetate) to give 4. All of the new
compounds were characterized by 1H, 19F and 13C NMR spec-
troscopy as well as IR spectroscopy, LRMS (lower resolution mass
spectrometry), and HRMS.
[7] a) L. Nagarapu, R. Mallepalli, L. Yeramanchi, R. Bantu, Tet-
rahedron Lett. 2011, 52, 3401–3404; b) K. Ramesh, K. Kar-
nakar, G. Satish, Y. V. D. Nageswar, Chin. Chem. Lett. 2012,
23, 1331–1334.
Acknowledgments
The authors are grateful to the National Natural Science Founda-
tion of China (NSFC) (grant number 21272152) and the Science
and Technology Commission of Shanghai Municipality for their
financial support.
[8] a) J. Wei, J. Chen, J. Xu, L. Cao, H. Deng, W. Sheng, H. Zhang,
W. Cao, J. Fluorine Chem. 2012, 133, 146–154; b) J. Qian, W.
Cao, H. Zhang, J. Chen, S. Zhu, J. Fluorine Chem. 2007, 128,
207–210; c) L. Lu, J. Wei, J. Chen, J. Zhang, H. Deng, M. Shao,
H. Zhang, W. Cao, Tetrahedron 2009, 65, 9152–9156; d) J. Xu,
J. Wei, L. Bian, J. Zhang, J. Chen, H. Deng, X. Wu, H. Zhang,
W. Cao, Chem. Commun. 2011, 47, 3607–3609; e) L. Lu, W.
Cao, J. Chen, H. Zhang, J. Zhang, H. Chen, J. Wei, H. Deng,
M. Shao, J. Fluorine Chem. 2009, 130, 295–300; f) H. Yu, J.
Han, J. Chen, H. Deng, M. Shao, H. Zhang, W. Cao, Eur. J.
Org. Chem. 2012, 16, 3142–3150; g) J. Han, L. Cao, L. Bian, J.
Chen, H. Deng, M. Shao, Z. Jin, H. Zhang, W. Cao, Adv.
Synth. Catal. 2013, 355, 1345–1350; h) L. Cao, D. Shen, J. Wei,
J. Chen, H. Deng, M. Shao, J. Shi, H. Zhang, W. Cao, Eur. J.
Org. Chem. 2014, 12, 2460–2467.
[1] a) B. C. Black, R. M. Hollingworth, K. I. Ahammadsahib,
C. D. Kukel, S. Donovan, Pestic. Biochem. Physiol. 1994, 50,
115–128; b) M. S. Wiehn, E. V. Vinogradova, A. Togni, J.
Fluorine Chem. 2010, 131, 951–957; c) M. A. Dekeyser, Pest
Manag. Sci. 2005, 61, 103–110; d) Y. Chen, Y. J. Wang, Z. M.
Su, D. W. Ma, Org. Lett. 2008, 10, 625–628; e) M. A. Akanmu,
C. Songkram, H. Kagechika, K. Honda, Neurosci. Lett. 2004,
364, 199–202; f) Y. Fukuda, H. Furuta, F. Shiga, Y. Oomori,
Y. Kusama, H. Ebisu, S. Terashima, Bioorg. Med. Chem. Lett.
1997, 7, 1683–1688.
[2] a) M. Schlosser, Angew. Chem. Int. Ed. 1998, 37, 1496–1513;
Angew. Chem. 1998, 110, 1538; b) B. E. Smart, in: Organofluor-
ine Chemistry (Eds.: R. E. Banks, B. E. Smart, J. C. Tatlow),
Springer, New York, 1994, p. 57; c) K. Mikami, Y. Itoh, M.
Yamanaka, Chem. Rev. 2004, 104, 1–16; d) K. Müller, C. Faeh,
F. Diederich, Science 2007, 317, 1881–1886; e) D. O’Hagan,
Chem. Soc. Rev. 2008, 37, 308–319; f) H. Amii, K. Uneyama,
Chem. Rev. 2009, 109, 2119–2183; g) P. Kirsch, Modern
Fluoroorganic Chemistry: Synthesis, Reactivity, Applications,
Wiley-VCH, Weinheim, Germany, 2004.
[9] J. Weng, Y. Chen, B. Yue, M. Xu, H. Jin, Eur. J. Org. Chem.
2015, 3164–3170.
[10] CCDC-1044871 (for 4b) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. Unit cell parameters of
4b: a = 12.0055(14) Å, b = 15.3801(17) Å, c = 9.6624(11) Å, α
= 90°, β = 97.047(2)°, γ = 90°, monoclinic, space group: Cc.
[11] B. C. Hamper, Org. Synth. 1992, 70, 246–255.
[12] Z. Chen, Q. Yan, Z. Liu, Y. Xu, Y. Zhang, Angew. Chem. Int.
Ed. 2013, 52, 13324–13328.
[3] a) M. Soufyane, C. Mirand, J. Lévy, Tetrahedron Lett. 1993,
34, 7737–7740; b) S. V. Moiseev, N. V. VasilЈev, Russ. Chem. [13] Y. Shen, S. Gao, J. Fluorine Chem. 1996, 76, 37–39.
Bull. 2005, 54, 1948–1953; c) D. Shi, G. Dou, C. Shi, Z. Li,
S. J. Ji, Synthesis 2007, 3, 3117–3124; d) L. Lu, G. Chen, S.
Received: August 1, 2015
Published Online: October 2, 2015
7090
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 7086–7090