ChemComm
Communication
responsible for the permselective ionic transport and rectifica-
tion properties of the nanopore, which can easily be followed by
I–V analysis. We believe that such enzyme-responsive nanoporous
systems have huge potential for biosensing, drug delivery and
design of controlled release platforms, especially when the
modulation of nanopore transport properties under biological
conditions is desired. Our further efforts will be focused on
exploring some of these applications.
S.N., M.A., and W.E. acknowledge financial support from the
Beilstein-Institut, Frankfurt/Main, Germany, within the research
collaboration NanoBiC, and L.F. and I.A. DFG-CFN Excellence
Initiative Project A5.7. We thank Prof. Christina Trautmann of
the GSI for help with the heavy ion irradiation experiments.
Fig. 3 The I–V curves of a single conical nanopore (d = B10 ꢁ 3 nm) in 100 mM
KCl solution (pH = 7.2) (a) before and after GNA-substrate immobilization, and
(b) before and after treatment with protease enzyme.
Notes and references
1 B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates
Inc., Sunderland, MA, 3rd edn, 2001.
2 (a) C. A. Doupnik, N. Davidson and H. A. Lester, Curr. Opin.
Neurobiol., 1995, 5, 268; (b) H. Daiguji, Y. Oka and K. Shirono, Nano
Lett., 2005, 5, 2274; (c) E. Gouaux and R. MacKinnon, Science, 2005,
310, 1461; (d) R. Mulero, A. S. Prabhu, K. J. Freedman and M. J. Kim,
J. Assoc. Lab. Autom., 2010, 15, 243.
3 (a) S. Howorka and Z. Siwy, Chem. Soc. Rev., 2009, 38, 2360;
(b) M. M. Tedesco, B. Ghebremariam, N. Sakai and S. Matile, Angew.
Chem., Int. Ed., 1999, 38, 540; (c) J. J. Kasianowicz, E. Brandin,
D. Branton and D. W. Deamer, Proc. Natl. Acad. Sci. U. S. A., 1996,
93, 13770; (d) H. Bayley and P. S. Cremer, Nature, 2001, 413, 226;
(e) K. Healy, Nanomedicine, 2007, 2, 459.
4 (a) K. Healy, B. Schiedt and A. P. Morrison, Nanomedicine, 2007,
2, 875; (b) C. Dekker, Nat. Nanotechnol., 2007, 2, 2096; (c) R. E.
Gyurcsanyi, TrAC, Trends Anal. Chem., 2008, 27, 627; (d) X. Hou,
W. Guo and L. Jiang, Chem. Soc. Rev., 2011, 40, 2385; (e) X. Hou and
L. Jiang, ACS Nano, 2009, 3, 3339.
5 (a) P. Y. Apel, Y. E. Korchev, Z. Siwy, R. Spohr and M. Yoshida,
Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, 184, 337; (b) Z. S.
Siwy, Adv. Funct. Mater., 2006, 16, 735; (c) P. Ramirez, P. Y. Apel,
J. Cervera and S. Mafe, Nanotechnology, 2008, 19, 315707; (d) R. Spohr,
Radiat. Meas., 2005, 40, 191–202; (e) C. Wei, A. J. Bard and S. W.
Feldberg, Anal. Chem., 1997, 69, 4627.
6 (a) M. Ali, S. Nasir, P. Ramirez, I. Ahmed, Q. H. Nguyen, L. Fruk,
S. Mafe and W. Ensinger, Adv. Funct. Mater., 2012, 22, 390; (b) M. Ali,
R. Neumann and W. Ensinger, ACS Nano, 2010, 4, 7267; (c) S. Nasir,
P. Ramirez, M. Ali, I. Ahmed, L. Fruk, S. Mafe and W. Ensinger,
J. Chem. Phys., 2013, 138, 034709; (d) M. Ali, S. Nasir, P. Ramirez,
J. Cervera, S. Mafe and W. Ensinger, ACS Nano, 2012, 6, 9247;
(e) Y. Tian, X. Hou, L. P. Wen, W. Guo, Y. L. Song, H. Z. Sun,
Y. G. Wang, L. Jiang and D. B. Zhu, Chem. Commun., 2010, 46, 1682.
7 (a) M. N. Tahir, M. Ali, R. Andre, W. E. G. Muller, H.-C. Schroder,
W. Tremel and W. Ensinger, Chem. Commun., 2013, 49, 2210;
(b) S. Nasir, M. Ali and W. Ensinger, Nanotechnology, 2012,
23, 225502; (c) B. Yameen, M. Ali, R. Neumann, W. Ensinger,
W. Knoll and O. Azzaroni, Nano Lett., 2009, 9, 2788; (d) X. Hou,
F. Yang, L. Li, Y. L. Song, L. Jiang and D. B. Zhu, J. Am. Chem. Soc.,
2010, 132, 11736.
8 (a) J. M. Hu, G. Q. Zhang and S. Y. Liu, Chem. Soc. Rev., 2012,
41, 5933; (b) M. E. Hahn and N. C. Gianneschi, Chem. Commun.,
2011, 47, 11814; (c) M. Zelzer, S. J. Todd, A. R. Hirst, T. O. McDonald
and R. V. Ulijn, Biomater. Sci., 2013, 1, 11; (d) J. E. Ghadiali and
M. M. Stevens, Adv. Mater., 2008, 20, 4359.
9 (a) S. Majd, E. C. Yusko, A. D. MacBriar, J. Yang and M. Mayer,
J. Am. Chem. Soc., 2009, 131, 16119; (b) Q. T. Zhao, R. S. S. de Zoysa,
D. Q. Wang, D. A. Jayawardhana and X. Y. Guan, J. Am. Chem.
Soc., 2009, 131, 6324; (c) M. Kukwikila and S. Howorka, J. Phys.:
Condens. Matter, 2010, 22, 454103.
substrate in the confined environment. To achieve this, the
AHCh-modified nanopore was exposed to 50 U mLꢀ1 solution
of AChE enzyme, which is known to specifically hydrolyze the
ester linkage in choline ester molecules such as acetylcholine.12
After treating the modified pore with AChE, the cationic choline
moieties were hydrolyzed and removed from the pore surface,
leading to the generation of carboxyl groups on the inner pore
walls (Fig. 1a). I–V curves shown in Fig. 2b reveal the recovery of
cation-selective and rectification behaviour of the nanopore
after AChE enzymatic hydrolysis reaction. The observed current
ratio (|I (+2 V)|/|I (ꢀ2 V)|) in the case of the AChE-treated pore
( frec = B5.2) was close to that of the as-prepared nanopore
( frec = B5.4), indicating almost complete cleavage and removal
of cationic moieties from the inner pore surface.
To further confirm the enzyme-triggered changes in nano-
pore surface polarity and permselectivity, we have also studied
the activity of protease enzyme inside confined geometries by
nanopore functionalization with a neutral substrate i.e., glycine
p-nitroanilide (GNA) as shown in Fig. 1b.
Fig. 3a shows the I–V curves of single conical nanopores
before (black) and after (olive) the functionalization with GNA
molecules. As expected, the nanopore rectification characteri-
stic was almost lost due to terminal uncharged p-nitrophenyl
moieties. The modified nanopore behaved like an ohmic resistor,
indicating the almost zero charge on the pore surface. Upon treat-
ment with protease enzyme, uncharged p-nitroaniline moieties were
removed from the inner pore walls due to the enzymatic cleavage of
the amide bond from the immobilized GNA-substrate molecules.13
The enzymatic-cleavage reaction resulted in the generation of
carboxylic acid groups, which were ionized to –COOꢀ under
physiological conditions (Fig. 1b). The I–V curves clearly indicated
that the protease catalyzed reaction switched the inner nanopore
environment from a hydrophobic (nonconducting) to a hydro-
philic (conducting) state and eventually, restored the cation-
selective and rectification characteristics of the nanopore (Fig. 3b).
In summary, we have demonstrated the functionalization of
single conical nanopores with enzyme substrate molecules. The
terminal moieties were removed from the immobilized sub-
strate by exposing the modified pore to respective enzyme. This
10 J. Frank, V. M. Kriwaczek, C. Marchand and R. Schwyzer, Helv. Chim.
Acta, 1977, 60, 2550.
11 P. Y. Apel, Radiat. Meas., 1995, 25, 667.
12 H. Dvir, I. Silman, M. Harel, T. L. Rosenberry and J. L. Sussman,
Chem.–Biol. Interact., 2010, 187, 10.
process led to the generation of functional chemical groups 13 A. Z. Budzynski, Lab. Med., 2001, 32, 365.
c
8772 Chem. Commun., 2013, 49, 8770--8772
This journal is The Royal Society of Chemistry 2013