10.1002/anie.202003585
Angewandte Chemie International Edition
RESEARCH ARTICLE
2733; b) Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z.
Shuai, B. Z. Tang, Nat. Commun. 2017, 8, 416; c) W. Zhao, T. S. Cheung,
N. Jiang, W. Huang, J. W. Y. Lam, X. Zhang, Z. He, B. Z. Tang, Nat.
Commun. 2019, 10, 1595.
phenomenon with color tunable, temperature-dependent, and
time-resolved properties provides a very high level of security
application for protecting the authenticity of many important and
valuable items.
[6]
a) J. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang,
Angew. Chem. Int. Ed. 2016, 55, 15589-15593; b) M. S. Kwon, D. Lee,
S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed. 2014, 53, 11177-11181;
c) D. Li, F. Lu, J. Wang, W. Hu, X. M. Cao, X. Ma, H. Tian, J. Am. Chem.
Soc. 2018, 140, 1916-1923; d) Z. Y. Zhang, Y. Liu, Chem. Sci. 2019, 10,
7773-7778; e) S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R.
Marder, T. Watanabe, C. Adachi, Adv. Funct. Mater. 2013, 23, 3386-
3397; f) Y. Su, Y. Zhang, Z. Wang, W. Gao, P. Jia, D. Zhang, C. Yang,
Y. Li, Y. Zhao, Angew. Chem. Int. Ed., DOI: 10.1002/anie.201912102; g)
Z. Wang, Y. Zhang, C. Wang, X. Zheng, Y. Zheng, L. Gao, C. Yang, Y.
Li, L. Qu, Y. Zhao, Adv. Mater., DOI: 10.1002/adma.201907355; h) Y. X.
Lei, W. B. Dai, Y. Tian, J. H. Yang, P. F. Li, J. B. Shi, B. Tong, Z. X. Cai,
Y. P. Dong, J. Phys. Chem. Lett. 2019, 10, 6019-6025.
Conclusion
In conclusion, we developed a series of host-guest materials
with RTP properties. The phosphorescence color can be tuned
from 502 to 608 nm under ambient conditions by selecting
different guests. This opens up a broad class of pure organic
compounds to new applications in phosphor design. In light of
both the experimental results and simulation, we believe that the
host molecules can not only restrict the molecular motion and
avoid the triplet quenching from the oxygen, but also exhibit a
synergistic effect for the realization of RTP. These materials with
color tunable, temperature dependent, and time-resolved
emissive properties can be used as writable and printable inks for
multiple-dimensional anti-counterfeiting.
[7]
a) X. Wang, H. L. Ma, M. X. Gu, C. Q. Lin, N. Gan, Z. L. Xie, H. Wang, L.
F. Bian, L. S. Fu, S. Z. Cai, Z. G. Chi, W. Yao, Z. F. An, H. F. Shi, W.
Huang, Chem. Mater. 2019, 31, 5584-5591; b) Q. Mei, Z. Zhang, Angew.
Chem. Int. Ed. 2012, 51, 5602-5606; c) C. Zhang, L. Yang, J. Zhao, B.
Liu, M. Y. Han, Z. Zhang, Angew. Chem. Int. Ed. 2015, 54, 11531-11535.
S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem.
Int. Ed. 2017, 56, 12160-12164.
[8]
[9]
a) R. Kabe, C. Adachi, Nature 2017, 550, 384-387; b) X. Zhang, L. Du,
W. Zhao, Z. Zhao, Y. Xiong, X. He, P. F. Gao, P. Alam, C. Wang, Z. Li,
J. Leng, J. Liu, C. Zhou, J. W. Y. Lam, D. L. Phillips, G. Zhang, B. Z.
Tang, Nat. Commun. 2019, 10, 5161; c) Z. Lin, R. Kabe, N. Nishimura,
K. Jinnai, C. Adachi, Adv. Mater. 2018, 30, 1803713.
Acknowledgements
This work was financially supported by the National Natural
Scientific Foundation of China (Grant Number: 51803009,
21975021, 51673024, 51328302, 21404010). Beijing Institute of
Technology Research Fund Program for Young Scholars.
[10] J. Xu, A. Takai, Y. Kobayashi, M. Takeuchi, Chem. Commun. 2013, 49,
8447-8449.
[11] a) H. Sun, Z. Hu, C. Zhong, X. Chen, Z. Sun, J. L. Brédas, J. Phys. Chem.
Lett. 2017, 8, 2393-2398. b) H. Han, E. G. Kim, Chem. Mater. 2019, 31,
17, 6925-6935. c) B. L Cotts, D. G. McCarthy, R. Noriega, S. B. Penwell,
ACS Energy Lett. 2017, 2, 1526-1533.
Keywords: color-tunable • host-guest synergistic effect • room
temperature phosphorescence • printable and writable security
inks • multi-dimension anti-counterfeiting
[12] a) X. Vries, P. Friederich, W. Wenzel, R. Coehoorn, P. A. Bobbert, Phys.
Rev. B 2019, 99, 205201. b) R. Gaoa, D. P. Yan, Chem. Sci. 2017, 8,
590-599. c) K. Totani, Y. O, S. H, M. Vacha, T. W, Adv. Optical Mater.
2013, 1, 283-288. d) X. P. Zhang, L. L. Du, W. J. Zhao, D. Phillips, G. Q.
Zhang, B. Z. Tang, Nat. Commun. 2019, 10, 5161.
[1]
a) O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3,
205-210; b) L. Gu, H. Shi, L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S.
Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao,
Z. An, X. Liu, W. Huang, Nat. Photonics 2019, 13, 406-411; c) Y. Xiong,
Z. Zhao, W. Zhao, H. Ma, Q. Peng, Z. He, X. Zhang, Y. Chen, X. He, J.
W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 7997-8001; d)
Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R.
Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685-690; e) Z. He, H. Gao,
S. Zhang, S. Zheng, Y. Wang, Z. Zhao, D. Ding, B. Yang, Y. Zhang, W.
Z. Yuan, Adv. Mater. 2019, 31, 1807222; f) W. Zhao, Z. He, Jacky. W. Y.
Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao, Ben. Z. Tang, Chem 2016,
1, 592-602; g) G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser,
Nat. Mater. 2009, 8, 747-751; h) J. Zhao, W. Wu, J. Sun, S. Guo, Chem.
Soc. Rev. 2013, 42, 5323-5351.
[13] Lakowicz, J. R. Principles of Fluorescence Spectroscopy. (Springer
Science &Business Media, 2013).
[14] a) J. Zhang, S. Sulaiman, I. K. Madu, R. M. Laine, T. Goodson, J. Phys.
Chem. C 2019, 123, 5048-5060; b) A. Kushnarenko, E. Miloglyadov, M.
Quack, G. Seyfang, Phys. Chem. Chem. Phys. 2018, 20, 10949-10959.
[15] a) L. W. Barbour, M. Hegadorn, J. B. Asbury, J. Am. Chem. Soc. 2007,
129, 15884-15894; b) O. Varnavski, N. Abeyasinghe, J. Aragó, J. J.
Serrano-Pérez, E. Ortí, J. T. López Navarrete, K. Takimiya, D. Casanova,
J. Casado, T. Goodson, J. Phys. Chem. Lett. 2015, 6, 1375-1384.
[16] a) S. Erevelles, N. Fukawa, L. Swayne, Journal of Business Research
2016, 69, 897-904; b) X. Liu, Y. Wang, X. Li, Z. Yi, R. Deng, L. Liang, X.
Xie, D. T. B. Loong, S. Song, D. Fan, A. H. All, H. Zhang, L. Huang, X.
Liu, Nat. Commun. 2017, 8, 899; c) J. F. Barrera, A. Mira, R. Torroba,
Opt. Express 2013, 21, 5373-5378.
[2]
[3]
a) H. Ma, Q. Peng, Z. An, W. Huang, Z. Shuai, J. Am. Chem. Soc. 2019,
141, 1010-1015; b) Y. Xie, Y. Ge, Q. Peng, C. Li, Q. Li, Z. Li, Adv. Mater.
2017, 29, 1606829.
a) T. Wang, X. Su, X. Zhang, X. Nie, L. Huang, X. Zhang, X. Sun, Y. Luo,
G. Zhang, Adv. Mater. 2019, 31, 1904273; b) J. Wang, Z. Chai, J. Wang,
C. Wang, M. Han, Q. Liao, A. Huang, P. Lin, C. Li, Q. Li, Z. Li, Angew.
Chem. Int. Ed. 2019, 58, 17297-17302; c) Y. Gong, G. Chen, Q. Peng,
W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27,
6195-6201; d) C. J. Chen, R. J. Huang, A. S. Batsanov, P. Pander, Y. T.
Hsu, Z. G. Chi, F. B. Dias, M. R. Bryce, Angew. Chem. Int. Ed. 2018, 57,
16407-16411.
[4]
[5]
a) Y. Lei, W. Dai, Z. Liu, S. Guo, Z. Cai, J. Shi, X. Zheng, J. Zhi, B. Tong,
Y. Dong, Mater. Chem. Front. 2019, 3, 284-291; b) Y. Gong, L. Zhao, Q.
Peng, D. Fan, W. Z. Yuan, Y. Zhang, B. Z. Tang, Chem. Sci. 2015, 6,
4438-4444.
a) Y. Shoji, Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto, N. Tanaka,
J. Seino, H. Nakai, T. Fukushima, J. Am. Chem. Soc. 2017, 139, 2728-
7
This article is protected by copyright. All rights reserved.