was added NEt3 (1.39 mL, 10.0 mmol). After stirring at room
temperature for 12 h, it was diluted with Et2O (200 mL) and washed
with AcOH (10%, 3ꢂ) and brine (1ꢂ). Drying with MgSO4 and
concentration, followed by flash chromatography yielded the pure
product. Yield = 1.2 g, 80%. 1H NMR (500 MHz, CDCl3): d 7.07
[2H, d, J(H–H) = 8.97 Hz, CH], 6.97 [2H, d, J(H–H) = 8.97 Hz, CH],
4.93 [1H, d, J(H–H) = 8.63 Hz, NH], 4.58 [1H, dd, J(H–H) = 6.64
Hz, J(H–H) = 14.92 Hz, CH], 3.12 [1H, dd, J(H–H) = 5.12 Hz,
J(H–H) = 13.92 Hz, CH2], 3.05 [1H, dd, J(H–H) = 6.41 Hz, J(H–H)
t
= 13.64 Hz, CH2], 1.42 [9H, s, Bu]. IR (cmꢀ1): 2115 (nN3).
z To determine if polymerization of Phe on the graphene surface was
occurring, we repeated the reaction with a methyl ester of Boc–
azido–Phe. Protection at both carboxy and amino terminus should
eliminate the possibility of peptide formation. Details of the reaction
and characterization are included in the ESI.w
1 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth,
V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl.
Acad. Sci. U. S. A., 2005, 102, 10451; A. K. Geim and
K. S. Novoselov, Nat. Mater., 2007, 6, 183.
2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004,
306, 666.
Fig. 3 Raman spectra of (a) exfoliated mG, D : G 0.66; (b) 1, D : G
0.78; (c) graphene oxide, D : G 0.77 and (d) annealed 1, D : G 0.67.
exfoliated mG sample. It should be noted that the bulk mG
material prior to exfoliation had a D : G ratio of 0.25
indicating possible modification to the electronic framework
simply through sonication in ODCB.15
3 A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri and
´
I. Dekany, Langmuir, 2003, 19, 6050; S. Park and R. S. Ruoff, Nat.
´ ´
In conclusion, we have reported a high yield method of
covalently functionalizing exfoliated graphene by nitrene
addition in ODCB. The addition results in few-layer, DMSO
soluble graphene sheets. Given the extensive range of organic
azides accessible by a simple diazo-transfer reaction,6 this
method offers a route to a wide variety of functional addends.
The advantages of our method are as follows: (1) no final
reduction step is required, (2) a wide variety of functional
addends are accessible, (3) reactions are not limited to aqueous/
polar conditions, and (4) highly functionalized, few-layer
graphene sheets are produced. The control over the extent of
functionalization is currently under investigation, as well as
the feasibility of 1 as a solid phase support for peptide
synthesis on the surface of a graphene scaffold.
Nanotechnol., 2009, 4, 217.
4 A. Lerf, H. He, M. Forster and J. Klinowski, J. Phys. Chem. B,
1998, 102, 4477.
5 M. Prato, C. Li and F. Wudl, J. Am. Chem. Soc., 1993, 115, 1148;
C. Gao, H. He, L. Zhou, X. Zheng and Y. Zhang, Chem. Mater.,
2009, 21, 360.
6 E. D. Goddard-Borger and R. V. Stick, Org. Lett., 2007, 9, 3797.
7 C. E. Hamilton, J. R. Lomeda, A. Sun, J. M. Tour and A. R. Barron,
Nano Lett., 2009, 9, 3460; C. E. Hamilton, J. R. Lomeda, Z. Sun,
J. M. Tour and A. R. Barron, Nano Res., 2010, 3, 138.
8 L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn and
R. B. Kaner, J. Mater. Chem., 2005, 15, 974.
9 V. H. Rawal and M. P. Cava, Tetrahedron Lett., 1985, 26, 6141.
10 C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews,
M. Burghard and K. Kern, Nano Lett., 2007, 7, 3499; S. Stankovich,
R. D. Piner, X. Chen, N. Wu, S. T. Nguyen and R. S. Ruoff,
J. Mater. Chem., 2006, 16, 155; H. A. Becerril, J. Mao, Z. Liu,
R. M. Stoltenberg, Z. Bao and Y. Chen, ACS Nano, 2008, 2, 463.
11 J. Chattopadhyay, A. Mukherjee, C. E. Hamilton, J. H. Kang,
S. Chakraborty, W. Guo, K. F. Kelly, A. R. Barron and
W. E. Billups, J. Am. Chem. Soc., 2008, 130, 5414.
Financial support for this work is provided by the Robert
A. Welch Foundation. We thank Dr Noe Alvarez for the TEM
images and Dr Dmitry Kosynkin for the graphene oxide
sample.
12 F. Tuinstra and J. L. Koenig, J. Chem. Phys., 1970, 53, 1126;
A. C. Ferrari, Solid State Commun., 2007, 143, 47.
Notes and references
13 Y. Liua, J. Zhoua, X. Zhangb, Z. Liub, X. Wana, J. Tianb,
T. Wanga and Y. Chen, Carbon, 2009, 47, 3113; S. Ryu,
M. Y. Han, J. Maultzsch, T. F. Heinz, P. Kim,
M. L. Steigerwald and L. E. Brus, Nano Lett., 2008, 8, 4597;
K. A. Worsley, P. Ramesh, S. K. Mandal, S. Niyogi, M. E. Itkis
and R.C. Haddon, Chem. Phys. Lett., 2007, 445, 51.
z Boc–Phe(4-N3)–OH (250 mg in ODCB) was added to the exfoliated
mG (Sigma Aldrich) solution in a 100 mL round bottom flask fitted
with a condenser and a stir bar. Refluxing temperatures were
maintained for 4 days after which the brown suspension was filtered
over a 0.2 mm PTFE filter paper. The filter cake was washed copiously
with MeOH, CHCl3, and DMF to remove any unreacted Phe(N3). The
fine brown powder was dried in an oven overnight at 125 1C. Final
yield: 110 mg.
14 J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W.-F. Hwang and
J. M. Tour, J. Am. Chem. Soc., 2008, 130, 16201.
15 S. Niyogi, M. A. Hamon, D. E. Perea, C. B. Kang, B. Zhao,
S. K. Pal, A. E. Wyant, M. E. Itkis and R. C. Haddon, J. Phys.
Chem. B, 2003, 107, 8799; K. R. Moonoosawmy and P. Kruse,
J. Phys. Chem. C, 2009, 113, 5133.
y In a 500 mL Schlenk flask, imidazole-1-sulfonylazideꢃHCl (1.02 g,
6 mmol), Boc–Phe(4-NH2)–OH (1.40 g, 5 mmol), and ZnCl2 (27.3 mg,
0.20 mmol) was dissolved in MeOH : MeCN (3 : 2, 300 mL) to this
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4097–4099 | 4099