carbonyl ligands. The variable temperature spectra of 9
were simulatedz in order to derive the activation parameters
S. C. Taylor, J. Organomet. Chem., 1989, 370, 97;
G. R. Stephenson, P. W. Howard and S. C. Taylor,
J. Organomet. Chem., 1991, 419, C14; A. J. Pearson,
A. M. Gelormini and A. A. Pinkerton, Organometallics, 1992,
11, 936.
for the exchange process of Ea = 46.8 ꢁ 1.7 kJ molꢂ1
,
DHz = 44.4 ꢁ 1.6 kJ molꢂl, DSz = ꢂ22.8 ꢁ 5.2 J Kꢂ1 molꢂ1
and DGz(298) = 51.2 ꢁ 3.1 kJ molꢂ1. Use of 13C{1H} VT-NMR
to probe fluxionality in tricarbonyliron(0) complexes is well
established and thermodynamic parameters have been derived
by this method for numerous other tricarbonyliron(0)diene
10 M. Ali Khan, M. F. Mahon, A. J. W. Stewart and S. E. Lewis,
Organometallics, 2010, 29, 199.
11 For reviews, see: W. A. Donaldson and S. Chaudhury, Eur. J. Org.
Chem., 2009, 3831; I. Bauer and H.-J. Knolker, in Iron Catalysis in
Organic Chemistry, ed. B. Plietker, Wiley-VCH, Weinheim,
Germany, 2008, pp. 1–27; R. Gree and J. P. Lellouche, in Advances
in Metal-Organic Chemistry, ed. L. S. Liebskind, JAI Press,
Greenwich, CT, 1995, pp. 129–273; A. J. Pearson, Synlett, 1990, 10.
12 Crystal data for 9: C14H14FeO7, M = 350.10, monoclinic, a =
10.1710(4) A, b = 7.2170(4) A, c = 10.6320(6) A, b = 110.426(3)1,
V = 731.36(6) A3, T = 150(2) K, space group P2(1), Z = 2,
complexes.18,19 The calculated value of DGz
for 9 is
(298)
comparable to that for the analogous tropone complex
(DGz
= 53.1 ꢁ 2.1 kJ molꢂ1).18
(298)
In summary, we have defined a rearrangement route to
arene 2,3-cis-diol derivatives of non-natural configuration.
The complex through which this rearrangement is realised
exhibits hindered ligand rotation, for which thermodynamic
data are presented. Our approach is complementary to other
strategies reported previously for achieving this ‘‘enantiomeric
switch’’. For example, substituted iodobenzenes can undergo
2,3-dihydroxylation followed by reductive iodine removal,20,22
but this can preclude the use of diol derivatives possessing
reductively labile functionality. The conceptually distinct
approach of enantiodivergent synthesis has also been
employed,21,22 requiring that two different synthetic routes
be established. In contrast, the approach we describe utilises
only oxidative conditions and will permit access to both
enantiomers of a given target by the same synthetic pathway.
Investigations to elucidate further the mechanism of formation
of 9 and to demonstrate the scope of this transformation are
underway in our laboratory and will be reported in due course.
We thank Prosidion Limited, EPSRC and CIKTN for a
CASE studentship (to MAK). We also thank Prof. Andrew G.
Myers (Harvard) for a generous gift of R. eutrophus B9 cells.
m(MoKa)
= , 6905 reflections measured, 3713
1.063 mmꢂ1
independent reflections (2y = 8.57–30.451, Rint = 0.0685) against
203 parameters gave R1 = 0.0385 and wR2 = 0.1056 [I > 2s(I)]
and R1 = 0.0404 and wR2 = 0.1107 (for all data). The goodness of
fit on F2 was 1.054. Flack parameter = ꢂ0.003(16).
13 W. Yang and M. Koreeda, J. Org. Chem., 1992, 57, 3836;
W. A. Szarek, A. Zamojski, K. N. Tiwari and E. R. Ison,
Tetrahedron Lett., 1986, 27, 3827.
14 A. J. Blacker, R. J. Booth, G. M. Davies and J. K. Sutherland,
J. Chem. Soc., Perkin Trans. 1, 1995, 2861; F. Fabris, J. Collins,
B. Sullivan, H. Leisch and T. Hudlicky, Org. Biomol. Chem., 2009,
7, 2619.
15 D. R. Boyd, N. D. Sharma, N. I. Bowers, G. B. Coen,
J. F. Malone, C. R. O’Dowd, P. J. Stevenson and C. C.
R. Allen, Org. Biomol. Chem., 2010, 8, 1415 and references therein.
16 D. A. Owen, A. V. Malkov, I. M. Palotai, C. Roe, E. J. Sandoe and
G. R. Stephenson, Chem.–Eur. J., 2007, 13, 4293 and references
therein.
17 A. Watanabe, T. Kamahori, M. Aso and H. Suemune, J. Chem.
Soc., Perkin Trans. 1, 2002, 2539.
18 L. Kruczynski and J. Takats, Inorg. Chem., 1976, 15, 3140.
19 C. G. Kreiter, S. Stuber and L. Wackerle, J. Organomet. Chem.,
1974, 66, C49; L. Kruczynski and J. Takats, J. Am. Chem. Soc.,
1974, 96, 932; J.-Y. Lallemand, P. Laszlo, C. Muzette and
A. Stockis, J. Organomet. Chem., 1975, 91, 71; D. Liebfritz and
H. tom Dieck, J. Organomet. Chem., 1976, 105, 255; K. S. Claire,
O. W. Howarth and A. McCamley, J. Chem. Soc., Dalton Trans.,
1994, 2615; H.-J. Knolker, G. Baum, N. Foitzik, H. Goesmann,
P. Gonser, P. G. Jones and H. Rottele, Eur. J. Inorg. Chem., 1998,
993.
Notes and references
1 D. T. Gibson, J. R. Koch, C. L. Schuld and R. E. Kallio,
Biochemistry, 1968, 7, 3795.
2 For reviews, see: T. Hudlicky and J. W. Reed, Synlett, 2009, 685;
D. R. Boyd and T. D. H. Bugg, Org. Biomol. Chem., 2006, 4, 181;
R. A. Johnson, Org. React., 2004, 63, 117; T. Hudlicky,
D. Gonzales and D. T. Gibson, Aldrichimica Acta, 1999, 32, 35.
3 D. R. Boyd, N. D. Sharma, M. V. Hand, M. R. Groocock,
N. A. Kerley, H. Dalton, J. Chima and G. N. Sheldrake,
J. Chem. Soc., Chem. Commun., 1993, 974.
4 A. M. Reiner and G. D. Hegeman, Biochemistry, 1971, 10, 2530.
5 J. T. Rossiter, S. R. Williams, A. E. G. Cass and D. W. Ribbons,
Tetrahedron Lett., 1987, 28, 5173.
20 For selected examples, see: D. R. Boyd, N. D. Sharma, S. A. Barr,
H. Dalton, J. Chima, G. Whited and R. Seemayer, J. Am. Chem.
Soc., 1994, 116, 1147; C. C. R. Allen, D. R. Boyd, H. Dalton,
N. D. Sharma, I. Brannigan, N. A. Kerley, G. N. Sheldrake and
S. C. Taylor, J. Chem. Soc., Chem. Commun., 1995, 117;
T. Hudlicky, C. D. Claeboe, L. E. Brammer, Jr., L. Koroniak,
G. Butora and I. Ghiviriga, J. Org. Chem., 1999, 64, 4909;
T. Hudlicky, U. Rinner, D. Gonzalez, H. Akgun, S. Schilling,
P. Siengalewicz, T. A. Martinot and G. R. Pettit, J. Org. Chem.,
2002, 67, 8726.
6 S.-Y. Sun, X. Zhang, Q. Zhou, J.-C. Chen and G.-Q. Chen, Appl.
Microbiol. Biotechnol., 2008, 80, 977.
21 For selected examples, see: T. Hudlicky, H. Luna, J. D. Price and
F. Rulin, J. Org. Chem., 1990, 55, 4683; T. Hudlicky, J. D. Price,
F. Rulin and T. Tsunoda, J. Am. Chem. Soc., 1990, 112, 9439;
M. G. Banwell, P. Darmos, M. D. McLeod and D. C. R. Hockless,
Synlett, 1998, 897; M. G. Banwell, D. C. R. Hockless,
J. W. Holman, R. W. Longmore, K. J. McRae and H. T.
T. Pham, Synlett, 1999, 1491; M. G. Banwell, C. Chun,
A. J. Edwards and M. M. Voegtle, Aust. J. Chem., 2003, 56, 861;
H. Leisch, A. T. Omori, K. J. Finn, J. Gilmet, T. Bisset, D. Ilceski
and T. Hudlicky, Tetrahedron, 2009, 65, 9862; K. A. B. Austin,
J. D. Elsworth, M. G. Banwell and A. C. Willis, Org. Biomol.
Chem., 2010, 8, 751.
7 G. N. Jenkins, D. W. Ribbons, D. A. Widdowson, A. M. Z. Slawin
and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1995, 2647;
A. G. Myers, D. R. Siegel, D. J. Buzard and M. G. Charest, Org.
Lett., 2001, 3, 2923; M. H. Parker, B. E. Maryanoff and
A. B. Reitz, Synlett, 2004, 2095; M. D. Mihovilovic,
H. G. Leisch and K. Mereiter, Tetrahedron Lett., 2004, 45, 7087;
T. C. M. Fischer, H. G. Leisch and M. D. Mihovilovic, Monatsh.
Chem., 2010, 141, 699.
8 M. G. Charest, C. D. Lerner, J. D. Brubaker, D. R. Siegel and
A. G. Myers, Science, 2005, 308, 395; M. G. Charest, D. R. Siegel
and A. G. Myers, J. Am. Chem. Soc., 2005, 127, 8292.
9 P. W. Howard, G. R. Stephenson and S. C. Taylor, J. Chem. Soc.,
Chem. Commun., 1988, 1603; P. W. Howard, G. R. Stephenson and
22 C. E. Dietinger, M. G. Banwell, M. J. Garson and A. C. Willis,
Tetrahedron, 2010, 66, 5250.
ꢀc
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 215–217 | 217