T. Cantat et al. / Journal of Organometallic Chemistry 687 (2003) 365ꢃ
/376
375
4.8. (h1-PhÃ
(3a?)
/
CHÄ
/
CHÃ
/
CH2)PdCl{(4-ClÃ
/
C6H4)3P}2
References
[1] (a) J. Tsuji, Palladium Reagents and Catalysts, John Wiley &
Sons, Chichester, 1996, p. 290;
It was synthesized from [Pd(h3-PhÃ
CH2)(m-Cl)]2 according to route B in Scheme 2 or by
addition of 1 equiv nBu4NCl to 2a?ꢀ; BF4ꢁ in chloro-
form (route C in Scheme 2). 1H-NMR (250 MHz,
/
CHÃ
/
CHÃ
/
(b) S.A. Godleski, in: B.M. Trost, I. Flemming (Eds.), Compre-
hensive Organic Synthesis, vol. 4, Pergamon, Oxford, 1991;
(c) C.G. Frost, J. Howard, J.M.J. Williams, Tetrahedron:
Asymmetry 3 (1992) 1089;
(d) G. Consiglio, R. Waymouth, Chem. Rev. 89 (1989) 257;
CDCl3): d 3.15 (d, 2H, JHH
JHH 13 Hz), 6.06 (dd, 1H, JHH
central H), 7.26ꢃ7.61 (m, 29H, H of Ph and aromatic H
of ligand). 31P-NMR (103 MHz, CDCl3): d 21.89 (s).
MS (FABꢀ) C45H33Cl7P2Pd: m/zꢂ955 [Mꢁ
Cl]ꢀ, 838
[Mꢁ
Cl-PhC3H4]ꢀ.
ꢂ
/
9 Hz), 5.28 (d, 1H,
(e) A. Pfaltz, Acc. Chem. Rev. 26 (1993) 339ꢃ345;
/
ꢂ
/
ꢂ
/
13, JHH 9 Hz,
ꢂ
/
(f) T. Hayashi, in: I. Ojima (Ed.), Catalytic Asymmetric Synthesis,
/
VCH, New York, 1993, p. 325;
(g) B.M. Trost, D.L. Van Vranken, Chem. Rev. 96 (1996) 395;
(h) B.M. Trost, Acc. Chem. Res. 29 (1996) 355;
/
/
/
/
(i) E.I. Negishi, Handbook of Organopalladium Chemistry for
Organic Synthesis, 2002, vol. 2, Wiley Interscience, New York,
pp. 1663ꢃ2027.
/
4.9. (h1-CH2Ä
/
CHÃ
/
CH2)PdCl(dppb) (5d)
[2] (a) C. Amatore, A. Jutand, G. Meyer, L. Mottier, Chem. Eur. J. 5
(1999) 466;
(b) C. Amatore, S. Gamez, A. Jutand, Chem. Eur. J. 7 (2001)
1273;
It was synthesized according to route B in Scheme 3:
dppb (0.114 g, 0.27 mmol) in acetone (5 ml) was added
(c) C. Amatore, S. Gamez, A. Jutand, G. Meyer, L. Mottier,
Electrochim. Acta 46 (2001) 3237.
to a solution of [Pd(h3-CH2Ã
/
CHÃCH2)(m-Cl)]2 (0.05 g,
/
0.136 mmol) in acetone (2.5 ml). After half an hour, the
solvent was concentrated. A pale yellow precipitate
appeared. After filtration, the solid was dissolved in
dichloromethane and crystallized in petroleum ether.
0.115 g was collected (70% yield). H-NMR (250 MHz,
CDCl3): d 1.91 (br. s, 4H, CH2 of dppb), 2.83 (br. s, 4H,
CH2 of dppb), 3.75 (br. m, 4H, CH2), 5.63 (quintet, 1H,
[3] C. Amatore, A. Jutand, M.A. M’Barki, G. Meyer, L. Mottier,
Eur. J. Inorg. Chem. (2001) 873.
[4] J. Powell, B.L. Shaw, J. Chem. Soc. A (1967) 1839.
[5] P. Braunstein, F. Naud, A. Dedieu, M.-M. Rohmer, A. DeCian,
S.J. Rettig, Organometallics 20 (2001) 2966.
[6] M. Kollmar, G. Helmchen, Organometallics 21 (2002) 4771.
[7] G. Malaise´, L. Barloy, J.A. Osborn, N. Kyritsakas, C. R. Chimie
5 (2002) 289.
1
[8] B. Akermark, G. Akermark, L.S. Hegedus, K. Zetterberg, J. Am.
Chem. Soc. 103 (1981) 2037.
[9] (a) J.E. Backvall, R.E. Nordberg, J. Am. Chem. Soc. 103 (1981)
JHH
ꢂ
/
10 Hz, central H of CH2ꢂ
/
CH Ã
/
CH2), 7.43 (br. s,
1
12 H, aromatic H), 7.55 (br. s, 8 H, aromatic H). H-
NMR (250 MHz, DMF-d7): d 1.18 (br. s, 4 H, CH2 of
dppb), 2.96 (br. s, 4H, CH2 of dppb), 3.75 (br. m, 4H,
CH2), 5.98 (quintet, 1H, JHH
CH2ꢂCH ÃCH2), 7.54 (br. s, 12H, aromatic H), 7.69
(br. s, 8H, aromatic H). 31P-NMR (103 MHz, CDCl3): d
18.47 (s). FABꢀ MS C31H33P2PdCl: m/zꢂ573 [Mꢁ
Clꢁ
Cl]ꢀ, 532 [Mꢁ C3H5]ꢀ.
¨
4959;
(b) R.E. Nordberg, J.E. Backvall, J. Organomet. Chem. 285
¨
ꢂ10.5 Hz, central H of
/
(1985) C24.
[10] M. Kawatsura, Y. Uozumi, T.J. Hayashi, Chem. Soc. Chem.
Commun. (1998) 217.
/
/
[11] (a) G.C. Lloyd-Jones, S.C. Stephen, J. Chem. Soc. Chem.
Commun. (1998) 2321;
/
/
/
/
/
(b) G.C. Lloyd-Jones, S.C. Stephen, Chem. Eur. J. 4 (1998) 2539.
[12] B.M. Trost, F.D. Toste, J. Am. Chem. Soc. 121 (1999) 4545.
[13] A mixed neutral complex (h3-CH2Ã
/
CHÃ
generated only by addition of two equiv. PPh3 to the dimer
[Pd(h3-CH2Ä
CHÃCH2)(m-Cl)]2 (Route F of Scheme 2) [3,4].
Attempt to synthesize such a complex with (4-CF3ÃC6H4)3P led
to a complex mixture.
[14] In a previous work [3], we established that the phosphonium salt
was formed from the neutral complex h1-RCHÄ
CHÃCH2Ã
/
CH2)PdCl(PPh3) 4 was
4.10. (h1-CH2Ä
/
CHÃ
/
CH2)PdCl(dppf) (5e)
/
/
It was synthesized according to the procedure used for
1
5d. Orange crystals (52% yield). H-NMR (250 MHz,
/
CDCl3): d 3.99 (br. m, 4H, ꢂ
Cp), 5.95 (quintet, 1H, JHH
CH2ÄCH ÃCH2), 7.48 (m, 12H, aromatic H), 7.60 (m,
8H, aromatic H). 31P-NMR (103 MHz, CDCl3): d 22.96
(s). (FABꢀ) C37H33ClFeP2PdCl: m/zꢂ701 [Mꢁ
Cl]ꢀ,
660 [MꢁClꢁ
C3H5]ꢀ.
/
CH2), 4.43 (m, 10H, H of
/
/
/
ꢂ/10.5 Hz, central H of
PdCl(PPh3)2 by a reversible reductive elimination which also
generated a Pd0 complex. This reaction became preponderant in
the presence of any chemical able to stabilize or to react with the
Pd0 complex (dba, extra PPh3, dioxygen) [3].
/
/
/
/
/
[15] For a review on the characterization of cationic PdII complexes by
conductivity measurements in DMF, see: A. Jutand, Eur. J. Inorg.
Chem. (2003) 2017.
/
/
[16] This value was calculated at 25 8C by addition of the conductivity
of 2aꢀ; BFꢁ4 ; 2 mM in DMF (69 ms cmꢁ1) determined above (see
text) to that of nBu4NCl, 2 mM in DMF (131 ms cmꢁ1) [17] and
subtraction of the conductivity of nBu4NBF4, 2 mM in DMF
(136 ms cmꢁ1) [2a].
[17] A. Jutand, A. Mosleh, Organometallics 14 (1995) 1810.
[18] The conductivity slightly increased to 20 ms cmꢁ1. This might be
due to the formation of a small amount of an allyl-phosphonium
salt [14].
Acknowledgements
This work has been supported by the Centre National
de la Recherche Scientifique (CNRS-ENS-UPMC,
UMR 8640) and the Ministe`re de la Recherche (Ecole
Normale Supe´rieure). We thank Johnson Matthey for a
generous loan of sodium tetrachloropalladate.