ChemComm
Communication
˜
´
Ed., 2010, 49, 8109; (e) K. Muniz and C. Martınez, J. Org. Chem.,
2013, 78, 2168.
5 (a) A. Wang, H. Jiang and H. Chen, J. Am. Chem. Soc., 2009,
131, 3846; (b) Y. Li, D. Song and V. M. Dong, J. Am. Chem. Soc.,
2008, 130, 2962; (c) M. J. Rawling and N. C. O. Tomkinson, Org.
Biomol. Chem., 2013, 11, 1434; (d) B. C. Giglio, V. A. Schmidt and
E. J. Alexanian, J. Am. Chem. Soc., 2011, 133, 13320; (e) H. C. Kolb,
M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994,
94, 2483; ( f ) C. J. R. Bataille and T. J. Donohoe, Chem. Soc. Rev.,
2011, 40, 114.
6 (a) X. Tong, M. Beller and M. K. Tse, J. Am. Chem. Soc., 2007, 129, 4906;
(b) L. L. Welbes, T. W. Lyons, K. A. Cychosz and M. S. Sanford, J. Am.
Chem. Soc., 2007, 129, 5836; (c) Y.-T. He, L.-H. Li, Y.-F. Yang, Z.-Z. Zhou,
H.-L. Hua, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2014, 16, 270 and
references therein; (d) K. B. Urkalan and M. S. Sigman, Angew. Chem.,
Int. Ed., 2009, 48, 3146 and references therein.
7 (a) S. R. Neufeldt, C. K. Seigerman and M. S. Sanford, Org. Lett.,
2013, 15, 2302; (b) Y. Zhang, J. Feng and C.-J. Li, J. Am. Chem. Soc.,
2008, 130, 2900; (c) X. Chen, J.-J. Li, X.-S. Hao, C. E. Goodhue and
J.-Q. Yu, J. Am. Chem. Soc., 2006, 128, 78; (d) X. Chen, C. E. Goodhue
and J.-Q. Yu, J. Am. Chem. Soc., 2006, 128, 12634; For reviews for
radical, see: (e) H. Togo, Advanced free radical reactions for organic
synthesis, Elsevier, 2004; ( f ) S. Z. Zard, Radical reaction in organic
synthesis, Oxford, 2003.
Scheme 3 Proposed mechanism.
presence of FeCl2, the formation of the tert-butoxy radical may be
accelerated by the single electron transfer (SET) reaction, along with
an Fe(III) species. Subsequently, the addition of the methyl radical
to the arylacrylamide forms a new radical species 4. Then, the
cyclization takes place to form the radical intermediate 5. Finally,
the single electron transfer reaction between intermediate 5 and
the tert-butoxy radical or Fe(III) species delivers the indolinone,
along with one equivalent of tert-butanol. For the meta-substituted
substrate, the cyclization at the more crowded 4-position is pre-
ferred because the resonance structure of the intermediate 5 is
more stable than that of the 6-position.
8 Q. Xia, X. Liu, Y. Zhang, C. Chen and W. Chen, Org. Lett., 2013,
15, 3326.
9 Y. Zhu, H. Yan, L. Lu, D. Liu, G. Rong and J. Mao, J. Org. Chem.,
2013, 78, 9898.
10 (a) S. Jaegli, J. Dufour, H. Wei, T. Piou, X. Duan, J. Vors, L. Neuville
and J. Zhu, Org. Lett., 2010, 12, 4498; (b) Y. Meng, L.-N. Guo, H. Wang
and X.-H. Duan, Chem. Commun., 2013, 49, 7540; (c) T. Shen, Y. Yuan
and N. Jiao, Chem. Commun., 2014, 50, 554; (d) Y.-M. Li, X.-H. Wei,
X.-A. Li and S.-D. Yang, Chem. Commun., 2013, 49, 11701; (e) Y.-M. Li,
M. Sun, H.-L. Wang, Q.-P. Tian and S.-D. Yang, Angew. Chem., Int. Ed.,
2013, 52, 3972; ( f ) X.-H. Wei, Y.-M. Li, A.-X. Zhou, T.-T. Yang and
S.-D. Yang, Org. Lett., 2013, 15, 4158; (g) H. Wang, L.-N. Guo and
X.-H. Duan, Adv. Synth. Catal., 2013, 355, 2222; (h) D. C. Fabry,
M. Stodulski, S. Hoerner and T. Gulder, Chem.–Eur. J., 2012,
18, 10834; (i) M.-B. Zhou, R.-J. Song, X.-H. Ouyang, Y. Liu,
W.-T. Wei, G.-B. Deng and J.-H. Li, Chem. Sci., 2013, 4, 2690;
( j) H.-L. Wei, T. Piou, J. Dufour, L. Neuville and J. Zhu, Org. Lett.,
2011, 13, 2244; (k) S. Jaegli, J. Dufour, H.-l. Wei, T. Piou, X.-H. Duan,
J.-P. Vors, L. Neuville and J. Zhu, Org. Lett., 2010, 12, 4498.
11 (a) F. Zhou, Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381;
(b) C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007,
46, 8748; (c) B. S. Jensen, CNS Drug Rev., 2002, 8, 353; (d) A. Millemaggi
and R. J. K. Taylor, Eur. J. Org. Chem., 2010, 4527.
In conclusion, we developed an FeCl2-promoted carbomethyla-
tion of arylacrylamides, which provided a facile pathway leading to
ethyl-3-substituted indolin-2-one. The procedure tolerates cyano,
nitro, ethyloxy carbonyl, bromo, chloro and trifluoromethyl groups.
A sequential methyl radical addition and cyclization is involved
in this reaction.
We thank the National Natural Science Foundation of China
(no. 21272028 and 21202013), the ‘‘Innovation & Entrepreneurship
Talents’’ Introduction Plan of Jiangsu Province, the Natural Science
Foundation of Zhejiang Province (no. R4110294), the Jiangsu Key
Laboratory of Advanced Catalytic Materials & Technology and
the State Key Laboratory of Coordination Chemistry at Nanjing
University for financial support.
12 (a) T. Wu, X. Mu and G. Liu, Angew. Chem., Int. Ed., 2011, 50, 12578;
(b) W.-T. Wei, M.-B. Zhou, J.-H. Fan, W. Liu, R.-J. Song, Y. Liu,
M. Hu, P. Xie and J.-H. Li, Angew. Chem., Int. Ed., 2013, 52, 3638;
(c) W.-P. Mai, J.-T. Wang, L.-R. Yang, J.-W. Yuan, Y.-M. Xiao, P. Mao
and L.-B. Qu, Org. Lett., 2014, 16, 204.
Notes and references
¨
1 For reviews, see: (a) H. Schoherr and T. Cernak, Angew. Chem., Int. Ed.,
2013, 52, 12256; (b) E. J. Barreiro, A. E. Ku¨mmerle and C. A. M. Fraga,
Chem. Rev., 2011, 111, 5215; For recent a-methylation of ketone, see: 13 (a) H. Egami, R. Shimizu, S. Kawamura and M. Sodeoka, Angew.
(c) L. K. M. Chan, D. L. Poole, D. Shen, M. P. Healy and T. J. Donohoe,
Angew. Chem., Int. Ed., 2014, 53, 761; (d) Y. Li, D. Xue, W. Lu, C. Wang,
Z.-T. Liu and J. Xiao, Org. Lett., 2014, 16, 66.
2 For some recent reviews on the difunctionalization of alkenes, see:
(a) K. H. Jensen and M. S. Sigman, Org. Biomol. Chem., 2008, 6, 4083;
Chem., Int. Ed., 2013, 52, 4000; (b) W. Kong, M. Casimiro, N. Fuentes,
E. Merino and C. Nevado, Angew. Chem., Int. Ed., 2013, 52, 13086;
(c) X. Mu, T. Wu, H. Wang, Y. Guo and G. Liu, J. Am. Chem. Soc., 2012,
134, 878; (d) F. Yang, P. Klumpthu, Y.-M. Liang and B. H. Lipshutz,
Chem. Commun., 2014, 50, 936.
(b) V. Kotov, C. C. Scarborough and S. S. Stahl, Inorg. Chem., 2007, 14 W. Fu, F. Xu, Y. Fu, M. Zhu, J. Yu, C. Xu and D. Zou, J. Org. Chem.,
46, 1910; (c) B. Jacques and K. Muinz, in Catalyzed Carbon- 2013, 78, 12202.
Heteroatom Bond Formation, ed. A. K. Yudin, Wiley VCH, 2010, 15 A. Pinto, Y. Jia, L. Neuville and J. Zhu, Chem.–Eur. J., 2007, 13, 961.
pp. 119–135; (d) S. R. Chemler, Org. Biomol. Chem., 2009, 7, 3009; 16 J. Xie, P. Xu, H. Li, Q. Xue, M. Jin, Y. Cheng and C. Zhu, Chem.
(e) S. Shylesh, M. Jia and W. R. Thiel, Eur. J. Inorg. Chem., 2010, 4395;
Commun., 2013, 49, 5672.
( f ) S.-X. Huang and K. Ding, Angew. Chem., Int. Ed., 2011, 50, 7734; 17 Z. Li, Y. Zhang, L. Zhang and Z.-Q. Liu, Org. Lett., 2014, 16, 382.
(g) K. Muniz and C. Martinez, J. Org. Chem., 2013, 78, 2168; 18 S. Alluri, H. Feng, M. Livings, L. Samp, D. Biswas, T. W. Lam,
(h) S. R. Chemler and M. T. Bovino, ACS Catal., 2013, 3, 1076.
E. Lobkovsky and A. K. Ganguly, Tetrahedron Lett., 2011, 52, 3945.
˜
3 (a) K. Muniz, Chem. Soc. Rev., 2004, 33, 166; (b) G. Liu and S. S. Stahl, 19 (a) T. Wu, H. Zhang and G. Liu, Tetrahedron, 2012, 68, 5229;
J. Am. Chem. Soc., 2006, 128, 7179; (c) L. V. Desai and M. S. Sanford,
Angew. Chem., Int. Ed., 2007, 46, 5737; (d) G. Li, H.-T. Chang and
K. B. Sharpless, Angew. Chem., Int. Ed. Engl., 1996, 35, 451.
(b) X. Chen, X.-S. Hao, C. E. Goodhue and J.-Q. Yu, J. Am. Chem. Soc.,
2006, 128, 6790; (c) W. D. Jones and F. J. Feher, J. Am. Chem. Soc., 1986,
108, 4814; (d) W. D. Jones, Acc. Chem. Res., 2003, 36, 140; (e) A. Pinto,
L. Neuville, P. Retailleau and J. Zhu, Org. Lett., 2006, 8, 4927.
¨
˜
4 (a) J. Streuff, C. H. Hovelmann, M. Nieger and K. Muniz, J. Am.
˜
Chem. Soc., 2005, 127, 14586; (b) K. Muniz, J. Am. Chem. Soc., 2007, 20 (a) J. A. Tunge and L. N. Foresee, Organometallics, 2005, 24, 6440;
129, 14542; (c) P. A. Sibbald and F. E. Michael, Org. Lett., 2009,
(b) R. Taylor, Electrophilic Aromatic Substitution, Wiley, New York,
1990, pp. 25–27.
´
˜
11, 1147; (d) A. Iglesias, E. Perez and K. Muniz, Angew. Chem., Int.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 3865--3867 | 3867