X. Li et al. / Tetrahedron Letters 45 (2004) 951–953
953
rise to an ee of 83%.2f 1-Indanone 12 and 1-tetralone 13
could also be reduced to 1-indanol and 1-tetralol with
good chiral induction. Furthermore, 2-acetylfuran was
cleanly reduced to (R)-1-(2-furyl)ethanol in 93% ee
without saturating the furan ring (entry 17).
Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori,
R. Angew. Chem., Int. Ed. 1997, 36, 285–288; (e) Matsum-
ura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1997, 119, 8738–8739; (f) Fujii, A.; Hashiguchi,
S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1996, 118, 2521–2522; (g) Hashiguchi, S.; Fujii, A.; Take-
hara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995,
117, 7562–7563.
An attractive feature of the present catalytic system lies
in the fact that the catalyst can be readily removed from
the product by addition of a low polarity solvent. Thus,
when the reduction reaction is complete, diethyl ether is
added to precipitate the Ru(II)-PEG-2 catalyst. In the
reduction of acetophenone 8a, ICP analysis of the
solution phase showed that less than 0.7 mol % of
ruthenium had leached into the solution. Attempts have
been made to recycle the catalyst. The experiment was
conducted with 8a using the HCO2H–Et3N azeotrope in
the presence of an equal volume of water (1 mL); the
catalyst was precipitated by introducing diethyl ether
and the product removed by syringe. In three consecu-
tive runs, the following conversions (eeÕs in parenthesis)
were observed: 99% (91%), 95% (92%) and 56% (82%).
These data suggest that whilst it is possible to recycle the
PEG-2 based catalyst, its stability remains to be
addressed.
3. For recent examples of similar ligands, see: (a) Handgraaf,
J.-W.; Reek, J. N. H.; Meijer, E. J. Organomet. 2003, 22,
€
€
3150–3157; (b) Pastor, I. M.; Vastila, P.; Adolfsson, H.
Chem. Commun. 2002, 2046–2047; (c) Sterk, D.; Stephan,
M. S.; Mohar, B. Tetrahedron: Asymmetry 2002, 13, 2605–
2608; (d) Rhyoo, H. Y.; Park, H.-J.; Chung, Y. K. Chem.
Commun. 2001, 2064–2065; (e) Cross, D. J.; Kenny, J. A.;
Houson, I.; Campbell, L.; Walsgrove, T.; Wills, M. Tetra-
hedron: Asymmetry 2001, 12, 1801–1806; (f) Nordin, S. J.
M.; Roth, P.; Tarnai, T.; Alonso, D. A.; Brandt, P.;
Andersson, P. G. Chem. Eur. J. 2001, 7, 1431–1436; (g)
Bubert, C.; Blacker, J.; Brown, S. M.; Fitzjohn, J. S.;
Muxworthy, J. P.; Thorpe, T.; Williams, J. M. J. Tetrahe-
dron Lett. 2001, 42, 4037–4039; (h) Petra, D. G. I.; Reek, J.
N. H.; Handgraaf, J.-W.; Meijer, E. J.; Dierkes, P.; Kamer,
P. C. J.; Brussee, J.; Schoemaker, H. E.; van Leeuwen, P. W.
N. M. Chem. Eur. J. 2000, 6, 2818–2829; (i) Alonso, D. A.;
Brandt, P.; Nordin, S. J. M.; Andersson, P. G. J. Am. Chem.
Soc. 1999, 121, 9580–9588; (j) Murata, K.; Ikariya, T.;
Noyori, R. J. Org. Chem. 1999, 64, 2186–2187; (k) Jiang,
Y.-T.; Jiang, Q.-Z.; Zhang, X.-M. J. Am. Chem. Soc. 1998,
120, 3817–3818; (l) Schwink, L.; Ireland, T.; Puntener, K.;
Knochel, P. Tetrahedron: Asymmetry 1998, 9, 1143–1163.
4. For recent reviews on polymer-immobilised ligands, see: (a)
Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217–
3274; (b) Fan, Q.-H.; Li, Y.-M.; Chan, A. S. C. Chem. Rev.
2002, 102, 3385–3466; (c) van Heerbeek, R.; Kamer, P. C.
J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Rev.
2002, 102, 3717–3756; (d) Clapham, B.; Reger, T. S.; Janda,
K. D. Tetrahedron 2001, 57, 4637–4662.
In summary, we have developed a new polymer sup-
ported, soluble chiral diamine ligand and shown its
ruthenium complex to be a highly efficient and easily
separable catalyst in asymmetric transfer hydrogenation
of simple ketones with HCOOH–Et3N as the hydrogen
source. Work is in progress on further applications of
this and related diamine ligands and improvement of the
recyclability of the catalyst.
5. (a) ter Halle, R.; Schulz, E.; Lemaire, M. Synlett 1997,
1257–1258; (b) Bayston, D. J.; Travers, C. B.; Polywka, M.
E. C. Tetrahedron: Asymmetry 1998, 9, 2015–2018; (c)
Touchard, F.; Fache, F.; Lemaire, M. Eur. J. Org. Chem.
2000, 3787–3792; (d) Chen, Y.-C.; Wu, T.-F.; Deng, J.-G.;
Liu, H.; Jiang, Y.-Z.; Choi, M. C. K.; Chan, A. S. C. Chem.
Commun. 2001, 1488–1489.
Acknowledgements
We thank Johnson Matthey Synetix for financial sup-
port and Dr. Robert Tooze for helpful discussions at the
beginning of the project.
6. While our work was in progress, which was first commu-
nicated at the 11th ICI Symposium in May 2002, two
publications appeared where DPEN was functionalised at
the phenyl rings: (a) Itsuno, S.; Tsuji, A.; Takahashi, M.
Tetrahedron Lett. 2003, 44, 3825–3828; (b) Ma, Y.-P.; Liu,
H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J.-G. Org. Lett. 2003,
5, 2103–2106.
7. The synthetic route for 3 will be published elsewhere.
8. Dickerson, T. J.; Reed, N. N.; Janda, K. D. Chem. Rev.
2002, 102, 3325–3344.
References and notes
1. For reviews on asymmetric transfer hydrogenation, see: (a)
Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner,
H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103–151; (b)
Everaere, K.; Mortreux, A.; Carpentier, J.-F. Adv. Synth.
Catal. 2003, 345, 67–77; (c) Saluzzo, C.; Lemaire, M. Adv.
Synth. Catal. 2002, 344, 915–928; (d) Saluzzo, C.; ter Halle,
R.; Touchard, F.; Fache, F.; Schulz, E.; Lemaire, M. J.
Organomet. Chem. 2000, 603, 30–39; (e) Palmer, M. J.;
Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045–2061; (f)
Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–
102; (g) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem.
Rev. 1992, 92, 1051–1069.
9. General procedure:
A solution of [RuCl2(p-cymene)]2
(3.1 mg, 0.005 mmol) and PEG-2 (50 mg, 0.012 mmol) in
CH2Cl2 (1 mL) was stirred for 30 min at room temperature.
After removal of CH2Cl2 under reduced pressure, ketone
(1.0 mmol) and HCOOH–Et3N azeotrope (1.0 mL) were
added. The mixture was degassed three times and then
stirred for the appropriate period of time (see Table 1) at
50 °C. The solvent was removed under reduced pressure and
Et2O (10 mL) was added to extract the organic compounds.
The conversion and enantioselectivity were determined by
GC analysis.
2. (a) Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org.
Chem. 2001, 66, 7931–7944; (b) Yamakawa, M.; Ito, H.;
Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466–1478; (c)
Yamada, I.; Noyori, R. Org. Lett. 2000, 2, 3425–3427; (d)