528 J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 3
Albert et al.
(7) Bernstein, P. R.; Aharony, D.; Albert, J . S.; Andisik, D.; Barth-
low, H. G.; Bialecki, R.; Davenport, T.; Dedinas, R. F.; Dembo-
fsky, B. T.; Koether, G.; Kosmider, B. J.; Kirkland, K.; Ohnmacht,
C. J .; Potts, W.; Rumsey, W. L.; Shen, L.; Shenvi, A.; Sherwood,
S.; Stollman, D.; Russell, K. Discovery of novel, orally active dual
NK1/NK2 antagonists. Bioorg. Med. Chem. Lett. 2001, 11, 2769-
2773.
(8) Rumsey, W. L.; Aharony, D.; Bialecki, R. A.; Abbott, B. M.;
Barthlow, H. G.; Caccese, R.; Ghanekar, S.; Lengel, D.; McCar-
thy, M.; Wenrich, B.; Undem, B.; Ohnmacht, C.; Shenvi, A.;
Albert, J . S.; Brown, F.; Bernstein, P. R.; Russell, K. Pharma-
7.56 (m), 7.52-7.45 (m), 7.40-7.30 (m), 7.11-7.10 (d), 7.04
(s), 7.01 (s), 6.87-6.84 (d), 4.53-4.45 (t), 3.94 (s), 3.92 (s), 3.68
(s), 3.44-3.27 (m), 3.11 (s), 3.02 (s), 2.76-2.73 (m), 2.62 (s),
2.55-2.38 (m); MS m/e 471 (M + 1).
N-[2-(S)-(3,4-Dich lor oph en yl)-3-am in ocar bon ylpr opyl]-
N-m eth yl-3-cya n o-2-m eth oxy-1-n a p h th a m id e (8). To a
stirred solution of 26 (0.50 g, 1.06 mmol) and diisopropylethy-
lamine (0.37 mL, 2.12 mmol) in DCM (20 mL) was added
tetramethylfluoroformamidinium hexaflurophosphate (0.33 g,
1.27 mmol). After 20 min, ammonium hydroxybenzotriazole51
(0.28 g, 2.12 mmol) was added. After 30 min, the solution was
extracted with saturated sodium bicarbonate, 1 M HCl, water,
and brine and then purified by flash chromatography (0.398
g, 80%): 1H NMR (DMSO-d6) δ 8.64-8.62 (m), 8.08-7.94 (m),
7.78-7.72 (m), 7.70 (s), 7.67 (s), 7.63-7.58 (m), 7.56-7.50 (m),
7.46-7.39 (m), 7.36-7.32 (m), 7.11 (bs); 7.01-6.98 (m), 6.85-
6.76 (m), 6.37-6.34 (d), 4.51-4.43 (t), 4.08-3.99 (m), 3.94 (s),
3.91 (s), 3.73-3.71 (m), 3.67 (s), 3.64-3.61 (m), 3.46-3.28 (m),
3.13 (s), 3.11 (s), 3.06 (s), 2.69 (s), 2.62 (s), 2.56-2.44 (m), 2.34-
2.27 (m), 2.16-2.11 (m), 2.07 (s); MS m/e 470 (M + 1). Anal.
Calcd for C24H21Cl2N3O3‚0.5H2O: C, 60.13; H, 4.62; N, 8.76.
Found: C, 60.22; H, 4.77; N, 8.69.
X-r a y Exp er im en ta l Da ta . Com p ou n d 8. This compound
was crystallized from methylene chloride: empirical formula,
C24H21Cl2N3O3‚CH2Cl2; crystal system, monoclinic; space group,
P21; number of molecules per unit cell, 2; lattice parameters,
a ) 10.432(2) Å, b ) 7.0522(4) Å, c ) 18.2035(13) Å, â )
90.825(7)°; unit-cell volume, 1339.1(2) Å3; least-squares struc-
ture refinement on F2 against all data converged at Rw(F2) )
0.1920; conventional R index R(F) ) 0.0689; S (goodness-of-
fit on F2) ) 1.036; x(σ(x)) (Flack absolute structure parameter
and its esd) ) -0.02(4); expected values for x are 0 (within 3
esd’s) for the correct and +1 for the inverted absolute struc-
ture. The crystal structure was solved by direct methods; all
non-hydrogen atoms appeared in the initial Fourier map
except for the methylene chloride molecule, which was identi-
fied after some initial cycles of refinement of the compound
molecule only followed by reassigning the methylene chloride
atoms in the same asymmetric unit. Hydrogen atoms were
generated in the course of refinement with idealized geom-
etries relative to neighboring non-hydrogen atoms. Disorder
was noted at the methyl from the amide N-methyl group and
accounted for in refinement, resulting in two sets of hydrogen
positions offset by 60° with occupation factors nearly equal,
about 0.5. Although the refinement parameters are within
acceptable ranges, the moderate results may be attributed to
the methylene chloride molecule being rather poorly defined,
as seen in Figure 1 by the large thermal ellipsoids, which
suggests that methylene chloride molecules were gradually
escaping from the crystal lattice over the course of continued
exposure to the X-ray beam during data collection.
cological characterization of ZD6021:
a novel, orally active
antagonist of the tachykinin receptors. J . Pharmacol. Exp. Ther.
2001, 298, 307-315.
(9) Albert, J . S.; Aharony, D.; Andisik, D.; Barthlow, H.; Bernstein,
P. R.; Bialecki, R. A.; Dedinas, R.; Dembofsky, B. T.; Hill, D.;
Kirkland, K.; Koether, G. M.; Kosmider, B. J .; Ohnmacht, C.;
Palmer, W.; Potts, W.; Rumsey, W.; Shen, L.; Shenvi, A.;
Sherwood, S.; Warwick, P. J .; Russell, K. Design, synthesis, and
SAR of tachykinin antagonists: Modulation of balance in NK1/
NK2 receptor antagonist activity. J . Med. Chem. 2002, 45, 3972-
3983.
(10) Testa, B.; Carrupt, P.-A.; Gal, J . The so-called “interconversion”
of stereoisomeric drugs: an attempt at clarification. Chirality
1993, 5, 105-111.
(11) Friary, R. J .; Spangler, M.; Osterman, R.; Schulman, L.;
Schwerdt, J . H. Enantiomerization of an atropisomeric drug.
Chirality 1996, 8, 364-371.
(12) Hauser, F. M.; Sengupta, D.; Corlett, S. A. Optically active total
synthesis of Calphostin D. J . Org. Chem. 1994, 59, 1967-1969.
(13) Oki, M. The Chemistry of Rotatonal Isomers; Springer-Verlag:
New York, 1993.
(14) Ahmed, A.; Bragg, R. A.; Clayden, J .; Lai, L. W.; McCarthy, C.;
Pink, J . H.; Westlund, N.; Yasin, S. A. Barriers to rotation about
the chiral axis of tertiary aromatic amides. Tetrahedron 1998,
54, 13277-13294.
(15) Clayden, J .; McCarthy, C.; Helliwell, M. Bonded peri-interactions
govern the rate of racemization of atropisomeric 8-substituted
1-naphthamides. Chem. Commun. 1999, 2059-2060.
(16) Clayden, J .; Pink, J . H. Concerted rotation in a tertiary aromatic
amide: towards a simple molecular gear. Angew. Chem., Int.
Ed. 1998, 37, 1937-1939.
(17) For compounds that displayed nonpurely competitive antago-
nism, activity could be estimated by monitoring the magnitude
of the maximum tissue relaxation response (percent of control
response) to increasing agonist concentration following incuba-
tion of the tissue with the antagonist at a given concentration.
Values are expressed as percent inhibition, which is calculated
by (100 - percentage of control response). Thus, greater an-
tagonist potency would be indicated by greater percent inhibition
and at lower antagonist concentration.
(18) Rupniak, N. M. J .; Tattersall, F. D.; Williams, A. R.; Rycroft,
W.; Carlson, E. J .; Cascieri, M. A.; Sadowski, S.; Ber, E.; Hale,
J . J .; Mills, S. G.; MacCoss, M.; Seward, E.; Huscroft, I.; Owen,
S.; Swain, C. J .; Hill, R. G.; Hargreaves, R. J . In vitro and in
vivo predictors of the anti-emetic activity of tachykinin NK1
receptor antagonists. Eur. J . Pharmacol. 1997, 326, 201-209.
(19) Iwamura, H.; Mislow, K. Stereochemical consequences of dy-
namic gearing. Acc. Chem. Res. 1988, 21, 175-182.
(20) Manuscript in preparation.
(21) Swain, C. J .; Sewart, E. M.; Cascieri, M. A.; Fong, T. M.; Herbert,
R.; MacIntyre, D. E.; Merchant, K. J .; Owen, S. N.; Owens, A.
P.; et al. Identification of a series of 3-(benzyloxy)-1-azabicyclo-
[2.2.2]octane human NK1 antagonists. J . Med. Chem. 1995, 38,
4793-4805.
Ackn owledgm en t. We gratefully acknowledge James
Hulsizer for large-scale synthesis efforts, J ames Hall
for detailed NMR analysis, and Margaret Lin for
crystallography support.
(22) Lowe, J . A., III; Drozda, S. E.; Snider, R. M.; Longo, K. P.; Zorn,
S. H.; Morrone, J .; J ackson, E. R.; McLean, S.; Bryce, D. K.; et
al. The discovery of (2S,3S)-cis-2-(diphenylmethyl)-N-[(2-meth-
oxyphenyl)methyl]-1-azabicyclo[2.2.2]octan-3-amine as a novel,
nonpeptide substance P antagonist. J . Med. Chem. 1992, 35,
2591-2600.
Su p p or tin g In for m a tion Ava ila ble: Crystallographic
data for 8. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces
(23) Boks, G. J .; Tollenaere, J . P.; Kroon, J . Possible ligand-receptor
interactions for NK1 antagonists as observed in their crystal
structures. Bioorg. Med. Chem. 1997, 5, 535-547.
(24) Caliendo, G.; Grieco, P.; Perissutti, E.; Santagada, V.; Saviano,
G.; Tancredi, T.; Temussi, P. A. Conformational analysis of three
NK1 tripeptide antagonists: A proton nuclear magnetic reso-
nance study. J . Med. Chem. 1997, 40, 594-601.
(25) Veenstra, S. J .; Hauser, K.; Betschart, C. Studies on the active
conformation of NK1 antagonist CGP 49823. Part 1. Synthesis
of conformationally restricted analogs. Bioorg. Med. Chem. Lett.
1997, 7, 347-350.
(26) Desai, M. C.; Lefkowitz, S. L.; Thadeio, P. F.; Longo, K. P.;
Snider, R. M. Discovery of a potent substance P antagonist:
recognition of the key molecular determinant. J . Med. Chem.
1992, 35, 4911-4913.
(1) Stout, S. C.; Owens, M. J .; Nemeroff, C. B. Neurokinin-1 receptor
antagonists as potential antidepressants. Annu. Rev. Pharmacol.
Toxicol. 2001, 41, 877-906.
(2) Chahl, L. A.; Urban, L. A. New developments in tachykinin
research. Pharmacol. Rev. Commun. 1999, 10, 197-203.
(3) Swain, C.; Rupniak, N. M. J . Progress in the development of
neurokinin antagonists. Annu. Rep. Med. Chem. 1999, 34, 51-
60.
(4) Gerspacher, M.; Von Sprecher, A. Dual neurokinin NK1/NK2
receptor antagonists. Drugs Future 1999, 24, 883-892.
(5) Gao, Z.; Peet, N. P. Recent advances in neurokinin receptor
antagonists. Curr. Med. Chem. 1999, 6, 375-388.
(6) Sakurada, T.; Sakurada, C.; Tan-No, K.; Kisara, K. Neurokinin
receptor antagonists: therapeutic potential in the treatment of
pain syndromes. CNS Drugs 1997, 8, 436-447.