V. Comte, J. P. Tranchier, F. Rose-Munch, E. Rose, D. P. P. Richard, C. Mo¨ıse
FULL PAPER
[2] [2a]
A. R. Pape, K. P. Krishna, E. P. Kündig, Chem. Rev. 2000,
cis), 134.9 (d, J ϭ 12 Hz, Ph ortho), 133.9 (d, J ϭ 36 Hz, Ph ipso),
133.1 (d, J ϭ 12 Hz, Ph ortho), 133.0 (d, J ϭ 35 Hz, Ph ipso), 131.9
(s, Ph para), 131.4 (s, Ph para), 129.7 (s, Ph meta), 129.5 (s, Ph
meta), 112.7 (d, J ϭ 8.3 Hz, C-2), 104.7 (d, J ϭ 20 Hz, C-1), 97.9
(d, J ϭ 14.7 Hz, C-6), 97.1 (s, C-4), 92.4 (d, J ϭ 4.6 Hz, C-5), 87.5
(d, J ϭ 6.5 Hz, C-3), 22.4 (s, CH3) ppm. C27H17Cr2O8P (604.4):
calcd. C 53.66, H 2.84; found C 53.57, H 3.02. {R3 ؍
PPh2Fe(CO)4:
6b[Fe]}: Not recrystallized (348 mg, 60% yield). IR (νCO, THF):
[2b]
100, 2917.
G. Bernardinelli, S. Gillet, E. P. Kündig, L.
Ronggang, A. Ripa, L. Saudan, Synthesis 2001, 13, 2040.
J. Breimair, M. Wieser, W. Beck, J. Organomet. Chem. 1992,
441, 429.
B. Niemer, J. Breimair, T. Völkel, B. Wagner, K. Polborn, W.
Beck, Chem. Ber. 1991, 124, 2237.
B. Niemer, M. Steinmann, W. Beck, Chem. Ber. 1988, 121,
1767.
J. Milke, K. Sünkel, W. Beck, J. Organomet. Chem. 1997, 543,
39.
[3]
[4]
[5]
[6]
[7]
[8]
[9]
ν˜ ϭ 2051 (w), 1972 (s), 1943 (s), 1897 (s) cmϪ1 1H NMR
.
(CD3COCD3): δ ϭ 2.16 (s, 3 H, Me) ppm; see Table 2. 31P{1H}
NMR (CD3COCD3): δ ϭ 74.0 (s) ppm.
X. Zhang, G. B. Carpenter, D. A. Sweigart, Organometallics
1999, 18, 4887.
H. Li, G. B. Carpenter, D. A. Sweigart, Organometallics 2000,
19, 1823.
[(η6-C6H4-1-R3-4-Me)Cr(CO)3] {R3
Yellow crystals (362 mg, 60% yield). IR (νCO, THF): ν˜ ϭ 2066 (w),
1973 (m), 1943 (s), 1901 (s) cmϪ1 1H NMR (CD3COCD3): δ ϭ
.
[9a] For insertion of a Pd entity into the CϪCl bond of cationic
Mn complexes, see: J. F. Carpentier, Y. Castanet, J. Brocard, A.
Mortreux, F. Rose-Munch, C. Susanne, E. Rose, J. Organomet.
Chem. 1995, 493, C22. [9b] For insertion of a Pd entity into the
CϪCl bond of Cr complexes, see for example: J. F. Carpentier,
F. Petit, A. Mortreux, V. Dufaud, J. M. Basset, J. Thivolle-
Cazat, J. Mol. Cat. 1993, 81, 1.
2.33 (s, 3 H, Me) ppm; see Table 2. 31P{1H} NMR (CD3COCD3):
δ ϭ 60.5 (s) ppm. 13C{1H} NMR (CDCl3): δ ϭ 231.4 [s, Cr(CO)3],
221.4 (d, J ϭ 6.5 Hz, Cr(CO)5 trans), 216.7 (d, J ϭ 12 Hz, Cr(CO)5
cis), 136.5 (d, J ϭ 37 Hz, Ph ipso), 133.0 (d, J ϭ 10.5 Hz, Ph ortho),
131.3 (s, Ph para), 129.4 (d, J ϭ 9 Hz, Ph meta), 111.9 (s, C-4),
99.9 (d, J ϭ 14.7 Hz, C-2 and C-6), 99.4 (d, J ϭ 27 Hz, C-1), 89.3
(d, J ϭ 6.5 Hz, C-3 and C-5), 21.3 (s, CH3). C27H17Cr2O8P (604.4):
calcd. C 53.66, H 2.84; found C 53.80, H 2.99. {R3 ؍
PPh2Fe(CO)4:
6c[Fe]}: Yellow crystals (330 mg, 57% yield). IR (νCO, THF): ν˜ ϭ
2051 (w), 1976 (s), 1942 (s), 1901 (s) cmϪ1. 1H NMR (CD3COCD3):
[10]
[11]
F. Rose-Munch, C. Susanne-Lecorre, F. Balssa, E. Rose, J.
Vaissermann, E. Licandro, A. Papagni, S. Maiorana, W. Meng,
R. Stephenson, J. Organomet. Chem. 1997, 545.
C. Renard, R. Valentic, F. Rose-Munch, E. Rose, J. Vaisser-
mann, Organometallics 1998, 17, 1587.
δ
ϭ 2.35 (s, 3
H, Me) ppm; see Table 2. 31P{1H} NMR
(CD3COCD3): δ ϭ 78.1 (s) ppm. C26H17CrFeO7P (580.2): calcd. C
[12] [12a]
J. A. Heppert, M. E. Thomas-Miller, P. N. Swepston, M.
W. Extine, J. Chem. Soc., Chem. Commun. 1988, 280. [12b] J. A.
Heppert, M. E. Thomas-Miller, F. Takusagawa, M. A. Morg-
enstern, M. R. Shaker, Organometallics 1989, 8, 1199.
53.82, H 2.95; found C 54.30, H 2.99.
[12c]
G.
Crystal Structure of 6b[Cr]: Single crystals of 6b[Cr] were obtained
by recrystallization from acetone. Intensity data were collected with
a Nonius Kappa CCD at 110 K. The structure was solved with a
Patterson search program and refined with full-matrix least-squares
methods based on F2(SHELXL-97)[25] with the aid of the WINGX
program.[26] All non-hydrogen atoms were refined with anisotropic
thermal parameters. Hydrogen atoms were included in their calcu-
lated positions or found in the final difference Fourier maps and
refined with a riding model. CCDC-187419 contains the sup-
plementary crystallographic data for this paper. These data can be
obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.
html [or from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) ϩ 44-
1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].
B. Richter-Addo, A. D. Hunter, N. Wichrowska, Can. J. Chem.
1990, 68, 41.
[13] [13a]
S. Rigny, J.-C. Leblanc, C. Mo¨ıse, New J. Chem. 1995, 19,
[13b]
145.
S. Rigny, J.-C. Leblanc, C. Mo¨ıse, B. Nuber, New J.
Chem. 1997, 21, 469. [13c] S. Rigny, V. I. Bakhmutov, B. Nuber,
[13d]
J.-C. Leblanc, C. Mo¨ıse, Inorg. Chem. 1996, 35, 3202.
V.
Comte, O. Blacque, M. M. Kubicki, C. Mo¨ıse, Organometallics
2001, 20, 5432.
[14] [14a] For the preparation of 1a see: A. M. Munro, P. L. Pauson,
[14b]
Z. Anorg. Allg. 1979, 458, 211.
For preparation of 1b, see:
[14c]
P. L. Pauson, J. A. Segal, J. Chem. Soc. 1975, 1677.
For
the preparation of 1c, see: F. Balssa, V. Gagliardini, F. Rose-
Munch, E. Rose, Organometallics 1996, 15, 4373.
For the preparation of 4a, see:
[15]
[15a]
C. A. L. Mahaffy, J. Or-
ganomet. Chem. 1984, 262, 33. For the preparation of 4b and
4c, see:
[15b]
G. Winkhaus, L. Pratt, G. Wilkinson, J. Chem.
Soc. 1961, 3807.
Acknowledgments
[16]
[17]
PPh2Li was prepared from PPh2H and butyllithium. PPh2H
was prepared by a published procedure: V. D. Bianco, S. Do-
ronzo, Inorg. Synth. 1976, 16, 162.
We thank the CNRS and the European Community TMR program
no. FMRX-CT98-0166 and COST D14 program for financial
support (J. P. T., F. R. M. and E. R.).
The reaction of PPh2Li with [(C6H6)Mn(CO)3]ϩ was already
described: P. J. C. Walker, A. J. Mawby, Inorg. Chim. Acta 1973,
7, 621. However, the corresponding addition product was ob-
tained in a very small amount which, according to the authors,
rendered impossible complete characterisation of the complex
which decomposed during attempted purification.
[1] [1a]
F. Mc Quillin, D. G. Parker, G. R. Stephenson, Transition
Metal, Organometallics for Organic Synthesis, Cambridge Uni-
M. F. Semmelhack,
Comprehensive Organometallic Chemistry (Eds.: W. Abel, F. G.
[1b]
versity Press, Cambridge, 1991, p. 429.
[18] [18a]
[18b]
´
S. Rigny, Thesis, Universite de Bourgogne, 1995.
We
A. Stone, G. Wilkinson), Pergamon, Oxford, 1995, vol. 12,
[1c]
were unable to purify complexes 3c[Fe] and 6a[Fe] for sta-
chapter 9, p. 979.
K. F. McDaniel, Comprehensive Or-
bility reasons.
ganometallic Chemistry (Eds.: E. W. Abel, F. G. A. Stone, G.
Wilkinson), Pergamon, Oxford, 1995, vol. 6, chapter 4, p. 93.
[19]
Such a regioselectivity has been observed for other nucleophiles
[1d]
F. Rose-Munch, V. Gagliardini, C. Renard, E. Rose, Coord.
adding meta to the MeO substituent of the arene ring, see for
[19a]
Chem. Rev. 1998, 178Ϫ180, 249. [1e] R. D. Pike, D. A. Sweigart,
example:
A. J. Pearson, I. C. Richards, J. Organomet.
Chem. 1983, 258, C41. [19b] R. P. Alexander, G. R. Stephenson,
[1f]
Coord. Chem. Rev. 1999, 187, 183.
D. Astruc, Chimie Or-
[19c]
´
ganometallique, Ed. EDP Sciences, Les Ulis, France, 2000, p.
J. Organomet. Chem. 1986, 314, C73.
Y. K. Chung, H. K.
[1g]
[19d]
111.
F. Rose-Munch, E. Rose, Eur. J. Inorg. Chem. 2002, 6,
Bae, I. N. Jung, Bull. Korean Chem. Soc. 1988, 9, 349.
A.
[1h]
1269.
F. Rose-Munch, E. Rose, Modern Arene Chemistry
J. Pearson, P. R. Bruhn, F. Gouzoules, S. H. Lee, J. Chem. Soc.,
[19e]
(Ed.: D. Astruc), Wiley-VCH, Weinheim, 2002, chapter 11, p.
Chem. Commun. 1989, 659.
W. H. Miles, P. M. Smiley, H.
[19f]
368.
R. Brinkman, J. Chem. Soc., Chem. Commun. 1989, 1897.
1898
2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2003, 1893Ϫ1899