Cruciforms as Functional Fluorophores
A R T I C L E S
Scheme 1. Synthesis of Cruciforms by a Combination of Horner
and Sonogashira Methods
fluorescence, quantum yields, and emissive lifetimes are ob-
served upon the addition of protons or metal cations. The
changes of the cruciforms’ photophysics upon exposure to
protons and to metal ions are comparable and suggest that
binding of either species occurs at the same molecular loci. The
observed photophysics can be explained by the position and
the spatial arrangement of the frontier molecular orbitals (FMO)
and their interaction with cations.
right with applications that range from fluorescence lifetime
imaging to their use as cofactors in fluorescent antibodies.8-11
If metal-complexing substituents are attached to the aromatic
core, bis(aminostyryl)benzenes function as metal-sensing spe-
cies, particularly if 15-crown[5] substituents are appended via
an aniline nitrogen.9 Significant blue-shift in the absorption is
observed upon binding of various metal cations, but the emissive
lifetimes remain almost unchanged.
Similarly, bis(arylethynyl)benzenes were investigated as
ligands for metal-organic networks and as model compounds
for the respective conjugated polymers.12 Their fluorescence
lifetimes (table in the Supporting Information) (τ) range from
τ ) 0.32 ns to τ ) 2.5 ns. Most of the emissive lifetimes are
around τ ) 1 ns. The herein investigated cruciforms 1-8 are
1,4-distyrylbenzenes, yet their photophysical behavior and their
spectroscopic responses to metal cations are significantly
expanded.
Results and Discussion
Synthesis. Cruciform fluorophores13-16 are π-systems in
which two alkene and two alkyne arms are placed in a 1,4-
2,5-relationship on a central benzene ring. The synthesis of
cruciforms 1-3, 5, and 7 has been described in ref 13, while
the synthesis of cruciforms 4, 6, and 8a is presented in the
Supporting Information. All of the cruciforms are made from a
common precursor (Scheme 1); 2,5-bis(bromomethyl)-1,4-
diiodobenzene is reacted with triethyl phosphite in an Arbuzov
reaction. A Horner17 olefination of the resulting bis(phosphonate)
(7) (a) Yang, J. S.; Chiou, S. Y.; Liau, K. L. J. Am. Chem. Soc. 2004, 126,
2518-2527. (b) Yang, J. S.; Liau, K. L.; Wang, C. M.; Hwang, C. Y. J.
Am. Chem. Soc. 2004, 126, 12325-12335. (c) Yang, J. S.; Liau, K. L.;
Tu, C. W.; Hwang, C. Y. J. Phys. Chem. A 2005, 109, 6450-6456. (d)
Yang, J. S.; Lin, Y. D.; Chang, Y. H.; Wang, S. S. J. Org. Chem. 2005,
70, 6066-6073.
(8) Holzer, W.; Penzkofer, A.; Gong, S. H.; Bradley, D. D. C.; Long, X.; Bleyer,
A. Chem. Phys. 1997, 224, 315-326.
(9) Barlow, S.; Risko, C.; Coropceanu, V.; Tucker, N. M.; Jones, S. C.; Levi,
Z.; Khrustalev, V. N.; Antipin, M. Y.; Kinnibrugh, T. L.; Timofeeva, T.;
Marder, S. R.; Bredas J. L. Chem. Commun. 2005, 764-766.
(10) Matsushita, M.; Meijler, M. M.; Wirsching, P.; Lerner, R. A.; Janda, K.
D. Org. Lett. 2005, 7, 4943-4946.
(11) (a) Bastiaens, P. I. H.; Squire, A. Trends Cell Biol. 1999, 9, 48-52. (b)
Lakowicz, J. R.; Szmacinski, H.; Nowaczyk, K.; Berndt, K. W.; Johnson,
M. Anal. Biochem. 1992, 202, 316-330. (c) Pepperkok, R.; Squire, A.;
Geley, S.; Bastiaens P. I. H. Curr. Biol. 1999, 9, 269-272. (d) Mayr, T.;
Igel, C.; Liebsch, G.; Klimant, I.; Wolfbeis, O. S. Anal. Chem. 2003, 75,
4389-4396.
(12) (a) Evans, O. R.; Lin, W. B. Acc. Chem. Res. 2002, 35, 511-522. (b) Lin,
W. B.; Evans, O. R.; Xiong, R. G.; Wang, Z. Y. J. Am. Chem. Soc. 1998,
120, 13272-13273.
1,4-Distyrylbenzene was first synthesized in 1917 by Kauf-
mann through the reaction of benzylmagnesium bromide with
terephthalic aldehyde followed by acid-catalyzed dehydration.
Wittig, Horner, and Heck routes were developed subsequently.6
The distyrylbenzene scaffold allows one to investigate changes
in photophysical properties upon the attachment of donor and
acceptor species.7 Distyrylbenzenes find use as blue-emitting
laser dyes and as model compounds for poly(para-phenyle-
nevinylene)s (PPV) but are attractive chromophores in their own
(13) (a) Wilson, J. N.; Josowicz, M.; Wang, Y. Q.; Bunz, U. H. F. Chem.
Commun. 2003, 2962-2963. (b) Wilson, J. N.; Bunz, U. H. F. J. Am. Chem.
Soc. 2005, 127, 4124-412. (c) Gerhardt, W. W.; Zucchero, A. J.; Wilson,
J. N.; South, C. R.; Bunz, U. H. F.; Weck, M. Chem. Commun. 2006, 2141-
2143.
(6) (a) Kaufmann, H. Chem. Ber. 1917, 50, 515-529. (b) Meier, H. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1399-1420. (c) Meier, H.; Lehmann, M.
Angew. Chem., Int. Ed. 1998, 37, 643-645. (d) Meier, H.; Gerold, J.;
Kolshorn, H.; Baumann, W.; Bletz, M. Angew. Chem., Int. Ed. 2002, 41,
292-295. (e) Deb, S. K.; Maddux, T. M.; Yu, L. P. J. Am. Chem. Soc.
1997, 119, 9079-9080. (f) Maddux, T. M.; Li, W. J.; Yu, L. P. J. Am.
Chem. Soc. 1997, 119, 844-845. (g) Wang, S. J.; Oldham, W. J.; Hudack,
R. A.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 5695-5709. (h) Bazan,
G. C.; Oldham, W. J.; Lachicotte, R. J.; Tretiak, S.; Chernyak, V.; Mukamel,
S. J. Am. Chem. Soc. 1998, 120, 9188-9200. (i) Oldham, W. J.; Lachicotte,
R. J.; Bazan, G. C. J. Am. Chem. Soc. 1998, 120, 2987-2988. (j) Scherf,
U.; Mu¨llen, K. Synthesis 1992, 23-38. (k) Schenk, R.; Gregorius, H.;
Meerholz, K.; Heinze, J.; Mu¨llen, K. J. Am. Chem. Soc. 1991, 113, 2634-
2647. (l) Scherf, U. Top. Curr. Chem. 1999, 201, 163-222.
(14) (a) Marsden, J. A.; Miller, J. J. Shirtcliff, L. D.; Haley, M. M. J. Am. Chem.
Soc. 2005, 127, 2464-2476. (b) Marsden, J. A.; Haley, M. M. J. Org.
Chem. 2005, 70, 10213-10226. (c) Marsden, J. A.; Miller, J. J.; Haley,
M. M. Angew. Chem., Int. Ed. 2004, 43, 1694-1697.
(15) (a) Hu, K.; Zhu, P. W.; Yu, Y.; Facchetti, A.; Marks, T. J. J. Am. Chem.
Soc. 2004, 126, 15974-15975. (b) Niazimbetova, Z. I.; Christian, H. Y.;
Bhandari, Y. J.; Beyer, F. L.; Galvin, M. E. J. Phys. Chem. B 2004, 108,
8673-8681.
(16) Klare, J. E.; Tulevski, G. S.; Sugo, K.; de Picciotto, A.; White, K. A.;
Nuckolls, C. J. Am. Chem. Soc. 2003, 125, 6030-6031.
9
J. AM. CHEM. SOC. VOL. 128, NO. 36, 2006 11873