Journal of the American Chemical Society
Page 4 of 6
Having found that the soft enolization step is rateꢀ
cation2(Scheme 3). DFT minimization19 of the catalystꢀbound
1
2
3
4
5
6
7
8
determining, we reasoned that there might be an opportunity to
demonstrate chemoselectivity for functionalization of αꢀtosyloxy
Scheme 2. Competition study conducted in common vessel.
oxyꢀallyl cation2(DFTꢀ2) suggests that enantiodiscrimination is
achieved via shielding of the oxyꢀallyl cation top face (as shown)
by way of acationꢀπꢀinteraction with one of the naphthalene
rings on the catalyst framework. Subsequent addition of the
indole 3nucleophile to the less sterically encumbered lower face
should provide the enantioenriched αꢀheteroaryl ketone 5.20
Acknowledgement.Financial support was provided by
NIHGMS (R01 GM078201ꢀ05) and gifts from Merck.
9
Supporting Information Available. Experimental procedures
and spectral data are provided. This material is available free of
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
References
(1) (a) Miyabe, H.; Takemoto, Y. Carbonyl and Imine Activation. In
Comprehensive Organic Synthesis (2nd Edition); Knochel, P.; Molander, G.
A., Eds.; Elsevier: Amsterdam, 2014, p. 751. For seminal papers, see: (b)
Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901. (c)
Scheme 3. Proposed mechanism of the substitution reaction.
Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed.2000, 39
1279.
,
H
Ar
H
O
Ar
(2) (a) MacMillan, D. W. C. Nature 2008, 455, 304. For seminal papers, see: (b)
Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000,
122, 4243. (c) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2000, 122, 9874.
(3) (a) Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. (b) Zhang,
Z.; Schreiner, P. R. Chem. Soc. Rev.2009, 38, 1187.For seminal papers, see:
(c) Kotke, M.; Schreiner, P. R. Tetrahedron2006, 62, 434. (d) Kotke, M.;
Schreiner, P. R. Synthesis 2007, 779. (e) Raheem, I. T.; Thiara, P. S.;
Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (f)
Ar
N
O
–H+ (RDS)
OTs
H
Ar
H
H
N
H
H
O
OH
–OTs
catalyst 4
ketone 1
2
Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130
7198. (g)Zuend, S. J.; Coughlin, M. P.; Lalonde, M.; Jacobsen, E. N. Nature
2009, 461, 968.
,
Me
Me
N
O
N
(4) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107
,
5471. For seminal paper, see: Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974,
39, 1615.
(5) (a) Favorskii, A. E. J. Russ. Phys.ꢀChem. Soc.1894, 26, 559. (b) Loftfield, R.
B. J. Am. Chem. Soc. 1951, 73, 4707.
(6) (a) Harmata, M. Chem. Commun. 2010, 46, 8886. (b) Harmata, M. Chem.
Commun. 2010, 46, 8904.
(7) (a) West, F. G.; Scadeng, O.; Wu, Y. –K.; Fradette, R. J.; Joy, S. The Nazarov
Cyclization. In Comprehensive Organic Synthesis (2nd Edition); Knochel, P.;
Molander, G. A., Eds.; Elsevier: Amsterdam, 2014, p. 827.For examples in
recent total syntheses, see: (b) Shvartsbart, A.; Smith, A. B. J. Am. Chem. Soc.
2015, 137, 3510. (c) Shi, Y.; Yang, B.; Cai, S.; Gao, S. Angew. Chem. Int. Ed.
2014, 53, 9539.
indole 3
enantioenriched
α-heteroaryl ketone 5
DFT-2
cyclopentanones in the presence of an almost identical aliphatic
cyclohexanone derivative. More specifically, we were aware
that fiveꢀmembered cyclic ketones undergo rapid αꢀ
deprotonation in comparison to their cyclohexanone
counterpartsdue to the unfavorable strain energy that arises from
introducing unsaturation into sixꢀmembered over fiveꢀmembered
rings. Indeed, when both ketones were subjected to this
asymmetric catalytic protocol in the same vessel, complete
selectivity forαꢀtosyloxy cyclopentanone functionalizationwas
observed, yielding 91% of thesmaller ring adduct and near
quantitative recovery of the αꢀtosyloxy cyclohexanone (Scheme
2).18
Finally, a series of experiments were conducted using αꢀBr
and αꢀOMs cyclopentanones to discriminate between two
possible pathways forasymmetric induction, namely a) catalyst
bound enantiodiscriminant oxyꢀallyl cation formation and b)an
ionic catalystꢀsubstrate anionꢀbinding activation mode. While
the use of different anion leaving groups on the cyclopentyl
moiety should have no effect on the enantioselectivity conferred
via a common oxyꢀallyl cation intermediate, we were aware that
anionꢀbinding catalysis typically exhibits large variations in
enantiocontrol as a function of the halide or tosylate leaving
group employed.3e In the event, the observed selectivities were
92% and 90% ee, respectively for the bromo and mesylate
groups, strongly suggesting thatthe catalyst is hydrogen bonded
to the oxyꢀallyl cation in the enantiodetermining step.
(8) (a) Vander Wal, M. N.; Dilger, A. K.; MacMillan, D. W. C. Chem. Sci.2013,
4
, 3075. The Chi group concurrently reported a similar transformation: (b)
Tang, Q.; Chen, X.; Tiwari, B.; Chi, R. C. Org. Lett. 2012, 14, 1922.
(9) For other reports employing oxyꢀallyl, siloxyꢀallyl, or azaoxyꢀallyl cations
towards racemic electrophilic activation, see: (a) Jeffrey, C. S.; Barnes, K. L.;
Eickhoff, J. A.; Carson, C. R. J. Am. Chem. Soc. 2011, 133, 7688. (b)
Acharya, A.; Eickhoff, J. A.; Jeffrey, C. S. Synthesis 2013, 45, 1825. (c) Li,
H.; Hughes, R. P.; Wu, J. J. Am. Chem. Soc. 2014, 136, 6288. (d) Ayala, C. E.;
Dange, N. S.; Fronczek, F. R.; Kartika, R. Angew. Chem. Int. Ed. 2015, 54
4641. (e) Dange, N. S.; Stepherson, J. R.; Ayala, C. E.; Fronczek, F. R.;
Kartika, R. Chem. Sci. 2015, , 6312. (f) Acharya, A.; Anumandla, D.; Jeffrey,
C. S. J. Am. Chem. Soc. 2015, 137, 14858 (g) DiPoto, M. C.; Hughes, R. P.;
Wu, J. J. Am. Chem. Soc. 2015, 137, 14861.
,
6
(10) The use of Nꢀmethylation or alcohol methylation analogues of catalyst 1 gave
product formation with 0% and 16% ee respectively.
(11) A similar catalyst scaffold was employed in the following works: (a) Arceo,
E.; Jurberg, I. D.; AlvarezꢀFernandez, A.; Melchiorre, P. Nat. Chem. 2013, 5,
750. (b) Luo, R.; Weng, J.; Ai, H.; Lu, G.; Chan, A. S. C. Adv. Synth. Catal.
2009, 351, 2449.
(12) (a) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303. (b) Dougherty, D.
A. Science1996, 271, 163.
(13) The use of 1,3ꢀdimethyl indole result in [3+2] cycloaddition adducts (78%
yield, 72% ee, 9:1 dr); major diastereomer as observed in reference 9c.
(14) The use of NꢀH indole in this reaction provided the corresponding product in
32% yield and 70% ee.
(15) For a review on the synthesis of pyrroloindolines and their reactivity, see: (a)
Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151. For a review of
pyrroloindolineꢀbearing natural products, see: (b) Steven, A.; Overman, L. E.
Angew. Chem. Int. Ed. 2007, 46, 5488.
(16)Labeling studies employing catalyst 1 and H218O revealed no incorporation of
18O into the product ketone, thus ruling out the possibility of enamine
formation with subsequent tosylate ionization to furnish an aminoꢀallyl cation.
(17) RPKA experiments were initially performed, but catalyst deactivation was
observed (see SI for experimental results), thus necessitating the use of the
method of initial rates. For a review on RPKA studies, see: Blackmond, D. G.
Angew. Chem. Int. Ed. 2005, 44, 4302.
Taking into account the combined results of our mechanistic
studies, we believe the following catalytic pathway is operative.
Hydrogen bonding of amino alcohol 4toαꢀtosyloxy ketone
1induces
a
rateꢀdetermining deprotonation step with
subsequentor concomitant ionization to form the highly reactive
4
ACS Paragon Plus Environment