C O M M U N I C A T I O N S
of Multi-Element Cyclic Molecules” from the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan, and a research
grant from the Faculty of Pharmaceutical Sciences, the University
of Tokushima. Generous allotment of computational time from the
Institute for Molecular Science, Okazaki, Japan, is deeply acknowl-
edged.
Figure 1. An orbital interaction of inward TS in the ring opening of a
â-lactone enolate.
Supporting Information Available: Experimental and computa-
tional procedures and spectral data of selected compounds (PDF). This
Scheme 3a
References
(1) For a recent review, see: (a) Blumenkopf, T. A.; Overman, L. E. Chem.
ReV. 1986, 86, 857-873. (b) Fleming, I.; Barbero, A.; Walter, D. Chem.
ReV. 1997, 97, 2063-2192.
(2) For examples of Pd-catalyzed coupling, see: (a) Hatanaka, Y.; Hiyama,
T. Synlett 1991, 845-853. (b) Itami, K.; Nokami, T.; Ishimura, Y.;
Mitsudo, K.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 11577-
11585. Cu(I)-promoted allylation: (c) Taguchi, H.; Ghoroku, K.; Tadaki,
M.; Tsubouchi, A.; Takeda, T. Org. Lett. 2001, 3, 3811-3814. Iodina-
tion: (d) Miller, R. B.; Reichenbach, T. Tetrahedron Lett. 1974, 543-
546 and references cited therein.
a Reagents: (a) DIBAH, 88%; (b) TsOH, 60%; (c) CuI, LiOtBu, allyl
bromide then TBAF, 89%; (d) I2, CF3CO2Ag, 47% (Z:E ) 96:4) (16%
recovery of the starting material); (e) tributylvinyltin, (CH3CN)2PdCl2, 79%;
(f) ethyl acrylate, (Ph3P)2PdCl2, Et3N, 60%
(3) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry;
Wiley: New York, 2000.
(4) For a recent review, see: Najera, C.; Yus, M. Org. Prep. Proced. Int.
1995, 27, 383-457.
To probe the reaction path, we attempted to trap the intermediate
â-lactone enolate. The reaction of the acylsilane (1, R1 ) PhCH2,
R2 ) Me) with the ynolate (2, R3 ) Me) at -78 °C produced
(5) Mono- and disubstituted silylalkenes via the Wittig reaction: (a) Sekiguchi,
A.; Ando, W. J. Org. Chem. 1979, 44, 413-415. (b) Soderquist, J. A.;
Anderson, C. L. Tetrahedron Lett. 1988, 29, 2425-2428. (c) Soderquist,
J. A.; Anderson, C. L. Tetrahedron Lett. 1988, 29, 2777-2778. Peterson
olefination: (d) Larson, G. L.; Soderquist, J. A.; Claudio, M. R. Synth.
Commun. 1990, 20, 1095-1104. (e) Fu¨rstner, A.; Kollegger, G.; Weidmann,
H. J. Organomet. Chem. 1991, 414, 295-305.
â-lactone (4) in good yield (IR, 1811 cm-1 12
thus revealing that
)
the â-lactone enolates are the intermediates in this olefination.
The stereochemistry would be controlled in the electrocyclic ring-
opening step10f of the â-lactone enolate (Figure 1). When tert-butyl
methyl ketone was employed for comparison sake, the Z:E
selectivity was only 4:1.13 The marked difference in the selectivities
could be explained by the stereoelectronic effect of silicon. With
the aid of B3LYP/6-31G* calculations (R ) H in Figure 1), the
transition state in the ring opening with inward rotation of the silanyl
group was found to be more stable in Gibbs energy than the outward
one by 17.5 kJ/mol. A localized molecular orbital analysis of the
TS of the inward ring opening can account for the torquoselectivity
as the interaction between a breaking C-O σ orbital and Si vacant
orbitals (i.e. 3d or 4sp orbitals, Figure 1).14
The silyl group of the silylalkenes can be transformed to other
functionalities (Scheme 3). After reduction of the ester, the resulting
silylalkene (5) was desilylated to give the E-alkene (6). The
silylalkene (5) was also coupled with allyl bromide2c to provide
the skipped diene (7). The conversion of silyl group into the iodide2d
was employed to afford the corresponding Z-iodoalkene (8), which
underwent a Heck reaction with ethyl acrylate and a Stille coupling
with vinyl tin to provide the dienes 9 and 10, respectively. Thus,
the efficient stereoselective synthesis of tetrasubstituted alkenes was
achieved.
(6) For recent examples of olefination of ketones leading to tetrasubstituted
olefins, see: (a) Mantani, T.; Shiomi, K.; Konno, T.; Ishihara, T.;
Yamanaka, H. J. Org. Chem. 2001, 66, 3442-3448. (b) Harrowven, D.
C.; Bradley, M.; Castro, J. L.; Flanagan, S. R. Tetrahedron Lett. 2001,
42, 6973-6975. (c) Tietze, L. F.; Kahle, K.; Raschke, T. Chem. Eur. J.
2002, 8, 401-407. (d) Sano, S.; Yokoyama, K.; Teranishi, R.; Shiro, M.;
Nagao, Y. Tetrahedron Lett. 2002, 43, 281-284.
(7) For an example, see: Feringa, B. L.; Jager, W. F.; Lange, B. Tetrahedron
1993, 49, 8267-8310.
(8) (a) Shindo, M. Tetrahedron Lett. 1997, 38, 4433-4436. (b) Shindo, M.;
Sato, Y.; Shishido, K. Tetrahedron 1998, 54, 2411-2422. (c) Shindo,
M.; Koretsune, R.; Yokota, W.; Itoh, K.; Shishido, K. Tetrahedron Lett.
2001, 42, 8357-8360.
(9) For reviews, see: (a) Shindo, M. Chem. Soc. ReV. 1998, 27, 367-374.
(b) Shindo, M. J. Synth. Org. Chem. Jpn. 2000, 58, 1155-1166. (c)
Shindo, M. Yakugaku Zasshi 2000, 120, 1233-1246.
(10) (a) Shindo, M.; Sato, Y.; Shishido, K. Tetrahedron Lett. 1998, 39, 4857-
4860. (b) Shindo, M.; Sato, Y.; Shishido, K. J. Org. Chem. 2000, 65,
5443-5445. Pioneering work on this type of reaction: (c) Kowalski C.
J.; Fields, K. W. J. Am. Chem. Soc. 1982, 104, 321-323. (d) Mulzer, J.;
Kerkmann, T. J. Am. Chem. Soc. 1980, 102, 3620-3622. Ring-opening
of oxetene: (e) Nair, V.; Sreekanth, A. R.; Vinod, A. U. Org. Lett. 2001,
3, 3495-3497. (f) Kowalski, C. J.; Sakdarat, S. J. Org. Chem. 1990, 55,
1977-1979.
(11) The geometry of the products was determined by NOE. See Supporting
Information.
(12) (a) Scho¨llkopf, U.; Hoppe, I. Angew. Chem., Int. Ed. Engl. 1975, 14, 765.
(b) Hoppe, I.; Scho¨llkopf, U. Liebigs Ann. Chem. 1979, 219-226. (c)
Akai, S.; Kitagaki, S.; Naka, T.; Yamamoto, K.; Tsuzuki, Y.; Matsumoto,
K.; Kita, Y. J. Chem. Soc., Perkin Trans. 1 1996, 1705-1709. See also
ref 10c.
(13) Shindo, M.; Sato, Y.; Yoshikawa, T.; Shishido. K. Unpublished results.
(14) Recently, Murakami and Ito reported a similar effect of silicon in the
ring opening of cyclobutenes: (a) Murakami, M.; Miyamoto, Y.; Ito, Y.
Angew. Chem., Int. Ed. 2001, 40, 189-190. (b) Murakami, M.; Miyamoto,
Y.; Ito, Y. J. Am. Chem. Soc. 2001, 123, 6441-6442. For a review on
torquoselectivity: (c) Dolbier, W. R., Jr.; Koroniak, H.; Houk, K. N.;
Sheu, C. Acc. Chem. Res. 1996, 29, 471-477. See also: (d) Walker, M.
J.; Hietbrink, B. N.; Thomas, B. E., IV; Nakamura, K.; Kallel, E. A.;
Houk, K. N. J. Org. Chem. 2001, 66, 6669-6672. (e) Ikeda, H.; Kato,
T.; Inagaki, S. Chem. Lett. 2001, 270-271. For theoretical calculations
of the ring opening of oxetenes, see: (f) Yu, H.; Chan, W.-T.; Goddard,
J. D. J. Am. Chem. Soc. 1990, 112, 7529-7537.
In conclusion, we have developed a stereoselective olefination
of acylsilanes via ynolate anions to produce (Z)-â-silyl-R,â-
unsaturated esters, which leads to tri- and tetrasubstituted alkenes.
This process is the first general method for producing tetrasubsti-
tuted alkenes by olefination of acylsilanes. Finally, it demonstrates
the synthetic utility of the multifunctional carbanions of ynolate
anions.
Acknowledgment. This work was supported in part by a Grant-
in-Aid for Scientific Research on Priority Areas (A) “Exploitation
JA026275R
9
J. AM. CHEM. SOC. VOL. 124, NO. 24, 2002 6841