Angewandte
Chemie
In summary, we have shown with the
example of the Holliday junction that the
global orientation of branched nucleic acids
can be derived from a small set of mRDCs
by taking advantage of the reduction in
required parameters, thus extending
approaches based on phage-induced
RDCs.[15] The same type of analysis can be
extended to other branched nucleic acids in
a relatively straightforward fashion. For
instance, under physiological salt condi-
tions, RNA and DNA 3H show coaxial
stacking of two of the three arms. The global
conformation is then defined by three
angles that describe the relative helix ori-
entations and would require the same mini-
mum number of mRDCs as for the 4H
discussed here. Similarly, for more strongly
branched nucleic acids, such as 5H and 6H
sometimes found in RNAs, the global con-
formation is defined by the relative orien-
tation of three helices when coaxial stacking
is present and would require a minimum of
six mRDCs (six Euler angles define the
relative helix orientations). The mRDC size,
although sufficiently large here, can easily
be increased by using larger magnetic fields
or larger nucleic acids (e.g. extension of
Scheme 1. Synthesis of 6. The asterisks indicate the 13C-labeled positions. AIBN=azobis-
isobutyronitrile, Bz=benzyl, DIEA=N,N-diisopropylethylamine, DMAP=4-dimethylami-
nopyridine, DMTr=4,4’-dimethoxytriphenylmethyl, OTf=trifluoromethanesulfonate,
TBAF=tetrabutylammonium fluoride, TIPDS=tetraisopropyldisilyl, TMS=trimethylsilyl.
each of the 4H helices by four base pairs
max
[1] a) D. M. J. Lilley, R. M. Clegg, S. Diekmann, N. C. Seeman, E.
leads to DD
of 16 Hz for 900 vs. 400 MHz). Also, with
CH
von Kitzing, P. J. Hagerman, Nucleic Acids Res. 1995, 23, 3363 –
present cryoprobe technology, magnetic-field-induced dipolar
couplings can be determined at natural abundance.
3364; b) R. Holliday, Genet. Res. 1964, 5, 282 – 304.
[2] a) A. Kuzminov, Microbiol. Mol. Biol. Rev. 1999, 63, 751 – 813;
b) S. C. West, Annu. Rev. Genet. 1997, 31, 213– 244; c) D. M. J.
Lilley, Q. Rev. Biophys. 2000, 33, 109 – 159; d) J. Nowakowski,
P. J. Shim, G. S. Prasas, C. D. Stout, G. F. Joyce, Nat. Struct. Biol.
1999, 6, 151 – 156; e) B. F. Eichman, J. M. Vargason, B. H. M.
Mooers, P. S. Ho, Proc. Natl. Acad. Sci. USA 2000, 97, 3971 –
3976; f) M. Ortiz-Lombardía, A. Gonzµlez, R. Eritja, J. Aymamí,
F. Azorín, M. Coll, Nat. Struct. Biol. 2000, 6, 913– 917; g) J.
Nowakowski, P. J. Shim, C. D. Stout, G. F. Joyce, J. Mol. Biol.
2000, 300, 93– 102.
[3] a) B. N. M. van Buuren, J. Schleucher, S. S. Wijmenga, J. Biomol.
Struct. Dyn. 2000, 11, 237 – 243; b) B. N. M. van Buuren, T.
Herman, S. S. Wijmenga, E. Westhof, Nucleic Acids Res. 2002,
30, 507 – 514.
[4] S. Quant, R. W. Wechselberger, M. A. Wolter, K. Wörner, P.
Schell, J. W. Engels, C. Griesinger, H. Schwalbe, Tetrahedron
Lett. 1994, 35, 6649 – 6652.
[5] a) J. H. Prestegard, H. M. Al-Hashimi, J. R. Tolman, Q. Rev.
Biophys. 2000, 33, 371 – 424; b) A. Bax, N. Tjandra, Nat. Struct.
Biol. 1997, 4, 254 – 256; c) N. Tjandra, J. G. Omichinski, A. M.
Gronenborn, G. M. Clore, A. Bax, Nat. Struct. Biol. 1997, 4, 73 2 –
738; d) J. H. Prestegard, Nat. Struct. Biol. 1998, 5, 517 – 522;
e) A. Bax, N. Tjandra, J. Biomol. NMR 1997, 10, 289 – 292;
f) M. R. Hansen, L. Mueller, A. Pardi, Nat. Struct. Biol. 1998, 5,
1065 – 1074; g) G. M. Clore, R. M. Starich, A. M. Gronenborn, J.
Am. Chem. Soc. 1998, 120, 10571 – 10572; h) G. M. Clore, A. M.;
Gronenborn, N. Tjandra, J. Magn. Reson. 1998, 131, 159 – 162;
i) G. Cornilescu, L. J. Marquardt, M. Ottiger, A. Bax, J. Am.
Chem. Soc. 1998, 120, 6836 – 6837; j) H. C. Kung, K. Y. Wang, I.
Goljer, P. H. Bolton, J. Magn. Reson. Ser. B 1995, 109, 323 – 325;
k) H. M. Al-Hashimi, A. Majundar, A. Gorin, A. Kettani, E.
Experimental Section
[13C5]-Thymidine phosphoramidite (6): Two J6 samples (Figure 1a)
were synthesized according to Scheme 1 with thymidine residues 13C-
labeled in the deoxyribose moiety of the nucleotide[4] (see Figure 1a).
[13C6]Glucose was converted into 1,2-di-O-acetyl-3,5-di-O-benzoyl
ribofuranose (1) and glycosylated to give nucleoside 2 according to a
published procedure.[4] 2’-Deoxygenation was carried out following a
procedure described by Robins et al. for the synthesis of 2’-
deoxyuridine.[16] Briefly, 2 was deprotected and treated with the
Markiewicz reagent to give 3’,5’-protected nucleoside 3, which was
further converted into its 2’-O-phenoxythiocarbonyl derivative.
Reductive deoxygenation with tri-n-butyltin hydride and the free-
radical initiator AIBN in warm toluene provided the thymidine
derivative 4. Fluoride-induced removal of the silyl protecting group
and treatment with dimethoxytrityl chloride gave 5, which was
phosphitylated to yield phosphoramidite 6. The product was ready for
use in automated DNA synthesis.
Received: April 10, 2003
Revised: September 30, 2003 [Z51632]
Keywords: Holliday junctions · isotopic labeling · NMR
.
spectroscopy · nucleic acids · structure elucidation
Angew. Chem. Int. Ed. 2004, 43, 187 –192
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
191